¡ì5º¯Êý¼«ÏÞÔËËã·¨Ôò ÐÕÃû ѧºÅ £±£®Ñ¡ÔñÌî¿Õ£º
£¨£±£©limx2?2x?sinxx??2x2?sinx£®£¨ £©
£¨£Á£©²»´æÔÚ£® £¨£Â£©£°£® £¨£Ã£©£²£® £¨£Ä£©
12£® 1x £¨£²£©Éèf(x)?e?1
2e?1£¬Ôòlimf(x)¡££¨ £©x?1x?0 £¨£Á£©?£® £¨£Â£©²»´æÔÚ£® £¨£Ã£©£°£® £¨£Ä£©12£®
£¨£³£©Éèf(x)????x,x?1,?x3,x?1,?3?x,x?1; g(x)??Ôòlimf?2x?1,x?1.?1?g(x)?¡££¨ £©
x £¨A£©?1. (B) 1 (C) 4. (D) ²»´æÔÚ£®
lim(1?a)x4(4)?bx3?2x??x3?x2?1??2, Ôò a,bµÄÖµ·Ö±ðΪ £¨ £© ( A)a=- 3 ,b=0 (B)a=0,b=- 2, (C)a= -1,b=0, (D) a= -1,b= -2
(5) ±äÁ¿f(x)?x2?1(x?1)x2?1ÔÚ£¨ £©µÄ±ä»¯¹ý³ÌÖÐÊÇÎÞÇîСÁ¿¡£
£¨A£© x?1 (B) x??1 (C) x?0 £¨D£©x??
2. ÇóÏÂÁи÷ʽµÄ¼«ÏÞ£º
£¨1£©lim(3x?1)70(8x?1)30x3x2x??(5x?2)100£» £¨2£©lim(?)£» x??2x2?12x?1
£¨3£©xlimx???£» £¨4£©limx?sinx£»
x?x?xx??x?cosx
11
2x2?x?1£¨5£©limx(x?1?x)£» £¨6£©lim£»
x???x?1x?12
312x?1£¨7£©lim(£» (8)£» ?)limt?11?tx?11?t2x?1
x3?ax2?x?43. Éèlim Óм«ÏÞÖµ m£¬ ÊÔÇó a¼° m µÄÖµ
x??1x?1
1?xsin,???x?0,?x??24.ÌÖÂÛlimf(x)µÄ´æÔÚÐÔ£¬ÆäÖÐf(x)??x?2x?1,0?x?1,ÇÒx0?0,1¡£
x?x0?x2?1?,1?x???;??x?1
12
¡ì6¼«ÏÞ´æÔÚ×¼Ôò Á½¸öÖØÒª¼«ÏÞ ÐÕÃû ѧºÅ
1£®ÇóÏÂÁм«ÏÞ £¨1£©lim(1n??n?1?1n?2???1n?n)£»
£¨2£©lim1nn(n2???1??n2?2????1n2?n?)£»
£¨3£©limn2?(?1)nn??2n;
£¨4£©limxsin1x??x£»
£¨5£©lim(1?x)?xx?1sec2£»
13
£¨6£©lim(1?3tgx)x?02ctg2x£»
£¨7£©lim(x??x?1x?2)£» x?3
x2x) £¨8£©lim(2x??x?1 (9)limx?01?tanx?1?sinx 3x
(10). limx?sinln(1?)?sinln(1?)?
x??xx
14
??31??£±£®
¡ì7ÎÞÇîСµÄ±È½Ï ÐÕÃû ѧºÅ
µ±x?0ʱÅжÏÏÂÁи÷ÎÞÇîС¶ÔÎÞÇîСxµÄ½×
2312£¨1£©x?sinx£» £¨2£©x?x;
£¨3£©3x?3x3?x5;
2.ÀûÓõȼÛÎÞÇîС´ú»»£¬ÇóÏÂÁи÷¼«ÏÞ£º
£¨1£©lim1?cos2x£» x?0xsinx
£¨3£©lim1?cos3xx?0xsin2x£»
£¨5£©lime2x?1x?0ln(x?1)£»
£¨4£©tgx?sinx; 3sinx?x2cos12£©limxx?0(1?cosx)ln(1?x) 4£©lim1x?0(sinx?1tgx), 36£©lim1?x2?1x?0x2£» 15
£¨£¨£¨
Ïà¹ØÍÆ¼ö£º