第一范文网 - 专业文章范例文档资料分享平台

[名校资料]福建省各市年中考数学分类解析专题6:函数的图像与性质

来源:用户分享 时间:2025/5/19 5:50:49 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【答案】解:(1)90; 4000;100。

(2)依题意,得y0?y1?100?90x?(4000?50x)??400000

解得x?200。

答:200天后节省燃料费40万元。 【考点】一次函数和一元一次方程的应用。

【分析】(1)根据图象得出y0=ax过点(100,9000),得出a的值,再将点(100,9000),代入y1=b+50x,求出b即可,再结合图象得出正常营运100天后从节省的燃料费中收回改装成本。

(2)根据题意及图象得出:改装前、后的燃料费燃料费每天分别为90元,50元,

从而得出y0?y1?100?90x?(4000?50x)??400000,得出即可。

11. (2012福建泉州14分)如图,点O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y?(1)求h的值;

(2)通过操作、观察算出△POQ面积的最小值(不必说理);

(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中四边形AOBQ是否为梯形,若是,请说明理由;若不是,请指明其形状.

12x?h交于不同的两点P、Q. 4

【答案】解:(1)∵二次函数y? ∴h=1。

12x?h的图象经过C(0,1), 4 (2)操作、观察可知当直线l∥x轴时,其面积最小; 将y=2带入二次函数y? ∴ S最小=(2×4)÷2=4。

12x?1中,得x??2, 4(3)连接BQ,若l与x轴不平行(如图),即PQ与x轴不平行,

12x?1上的点 411P(a,a2?1)、Q(b,b2?1)(a<0<b)。

44依题意,设抛物线y?直线BC:y=k1x+1过点P, ∴a2?1=ak1+1,得k1=a。 ∴直线BC:y=ax+1 令y=0得:xB=?

过点A的直线l:y=k2x+2经过点P、Q,

∴a2?1?ak2?2?①,b2?1=bk2?2?②。

①×b-②×a得:(a2b?b2a),化简得:b=?。 ?b?a?2(b?a)∴点B与Q的横坐标相同。∴BQ∥y轴,即BQ∥OA。 又∵AQ与OB不平行,∴四边形AOBQ是梯形。 根据抛物线的对称性可得(a>0>b)结论相同。

若l与x轴平行,由OA=2,BQ=2,OB=2,AQ=2,且∠AOB=900,得四

边形AOBQ是正方形。

故在直线l旋转的过程中:当l与x轴不平行时,四边形AOBQ是梯形;

当l与x轴平行时,四边形AOBQ是正方形。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,旋转的性质,二次函数的性质,一次函数的运用,梯形和正方形的判定。

【分析】(1)根据二次函数图象上的点的坐标特征,利用待定系数法求得h的值。

(2)操作、观察可得结论。实际上,由P(a,a2?1)、Q(b,b2?1)(a<0

<b),可求得b=?(参见(3))。

1414144a1414144a14144aS?POQ??11444?OA?xQ?xP??OA?|??a|?(?)(??a)=????a???+4 22aaa??4∴当?=?a即|a|=|b|(P、Q关于y轴对称)时,△POQ的面积最小。

a即PQ∥x轴时,△POQ的面积最小,且POQ的面积最小为4。

(3)判断四边形AOBQ的形状,可从四个顶点的坐标特征上来判断.首先设出P、

2Q的坐标,然后根据点P、C求出直线BC的解析式,从而表示出点B的坐标,然后再通过直线PQ以及P、A、Q三点坐标,求出Q、B两点坐标之间的关联,从而判断该四边形是否符合梯形的特征。

[名校资料]福建省各市年中考数学分类解析专题6:函数的图像与性质.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c00zwe5iyon58u602x74s2b61z97lf1017ls_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top