第一范文网 - 专业文章范例文档资料分享平台

2019年全国中考数学真题分类汇编:等腰(边)三角形(含答案 )

来源:用户分享 时间:2025/8/24 7:08:43 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019年全国中考数学真题分类汇编:等腰(边)三角形

一、选择题

1.(2019年浙江省衢州市)“三等分角”大约是在公元前五世纪由古希腊人提出来的。借助如图所示的“三等分角仪”能三等分任一角。这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是( )

A. 60° B. 65° C. 75° D. 80° 【考点】三角形内角和定理,三角形的外角性质,等腰三角形的性质 【解答】解:∵OC=CD=DE, ∴∠O=∠ODC,∠DCE=∠DEC, 设∠O=∠ODC=x, ∴∠DCE=∠DEC=2x,

-∠DCE-∠DEC=180°-4x, ∴∠CDE=180°, ∵∠BDE=75°

, ∴∠ODC+∠CDE+∠BDE=180°即x+180°-4x+75°=180°, 解得:x=25°, -4x=80°. ∠CDE=180°故答案为:D.

2.(2019年重庆市)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为( )

A. B. C. D.

【考点】轴对称的性质、解直角三角形、勾股定理、等边三角形

【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H, ∵AD=AC′=2,D是AC边上的中点, ∴DC=AD=2,

由翻折知,△BDC≌△BDC',BD垂直平分CC', ∴DC=DC'=2,BC=BC',CM=C'M, ∴AD=AC′=DC'=2, ∴△ADC'为等边三角形,

∴∠ADC'=∠AC'D=∠C'AC=60°, ∵DC=DC', ∴∠DCC'=∠DC'C=在Rt△C'DM中, ∠DC'C=30°,DC'=2, ∴DM=1,C'M=

DM=

, ×60°=30°,

∴BM=BD﹣DM=3﹣1=2, 在Rt△BMC'中, BC'=∵S△BDC'=∴

=BC'?DH=

, ,

BD?CM,

DH=3×

∴DH=故选:B.

3.(2019年浙江省衢州市)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的

正六边形。则原来的纸带宽为( )

A. 1 B. C. D. 2

【考点】等边三角形的性质 【解答】解:如图,作BG⊥AC,

依题可得:△ABC是边长为2的等边三角形, 在Rt△BGA中, ∵AB=2,AG=1, ∴BG=

.

即原来的纸宽为 故答案为:C.

4. (2019年甘肃省天水市)如图,等边△OAB的边长为2,则点B的坐标为( )

A.(1,1)

B.(1,

C.(

,1)

D.(

【考点】等边三角形的性质

【解答】解:过点B作BH⊥AO于H点,∵△OAB是等边三角形,

2019年全国中考数学真题分类汇编:等腰(边)三角形(含答案 ).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c017pr6cyra667gj1yjqg01k8300x4z01csc_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top