模型组合讲解——电磁场中的单杆模型
秋飏
[模型概述]
在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。
[模型讲解]
一、单杆在磁场中匀速运动
例1. (2005年河南省实验中学预测题)如图1所示,R1?5?,R2???,电压表与电流表的量程分别为0~10V和0~3A,电表均为理想电表。导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。
图1
(1)当变阻器R接入电路的阻值调到30?,且用F1=40N的水平拉力向右拉ab棒并使之达到稳定速度v1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度v1是多少?
(2)当变阻器R接入电路的阻值调到3?,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大? 解析:(1)假设电流表指针满偏,即I=3A,那么此时电压表的示数为U=IR并=15V,电压表示数超过了量程,不能正常使用,不合题意。因此,应该是电压表正好达到满偏。 当电压表满偏时,即U1=10V,此时电流表示数为
I1?U1?2A R并设a、b棒稳定时的速度为v1,产生的感应电动势为E1,则E1=BLv1,且E1=I1(R1+R并)=20V
a、b棒受到的安培力为 F1=BIL=40N 解得v1?1m/s (2)利用假设法可以判断,此时电流表恰好满偏,即I2=3A,此时电压表的示数为
U2?I2R并=6V可以安全使用,符合题意。
由F=BIL可知,稳定时棒受到的拉力与棒中的电流成正比,所以
F2?
I23F1?×40N?60N。 I12二、单杠在磁场中匀变速运动
例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U”形金属导
轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为L=0.50m。一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab棒的电阻为R=0.10Ω,其他各
.T。 部分电阻均不计。开始时,磁感应强度B0?050
图2
(1)若保持磁感应强度B0的大小不变,从t=0时刻开始,给ab棒施加一个水平向右
的拉力,使它做匀加速直线运动。此拉力F的大小随时间t变化关系如图2乙所示。求匀加速运动的加速度及ab棒与导轨间的滑动摩擦力。
(2)若从t=0开始,使磁感应强度的大小从B0开始使其以?B=0.20T/s的变化率均?t匀增加。求经过多长时间ab棒开始滑动?此时通过ab棒的电流大小和方向如何?(ab棒与导轨间的最大静摩擦力和滑动摩擦力相等) 解析:(1)当t=0时,F1?3N,F1?Ff?ma 当t=2s时,F2=8N
F2?Ff?B0B0LatL?ma R联立以上式得:
a?(F2?F1)R?4m/s2,Ff?F1?ma?1N 22B0Lt(2)当F安?Ff时,为导体棒刚滑动的临界条件,则有:
?B2L?tBL?Ff R则B?4T,B?B0?
三、单杆在磁场中变速运动
例3. (2005年上海高考)如图3所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成?=37°角,下端连接阻值为R的电阻。匀速磁场方向与导轨平面垂直。质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。
?Bt,t?17.5s ?t
图3
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小; (3)在上问中,若R=2?,金属棒中的电流方向由a到b,求磁感应强度的大小与方向。(g=10m/s2,sin37°=0.6,cos37°=0.8) 解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律
mgsin???mgcos??ma ①
由①式解得 a?4m/s ②
(2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡:
2mgsin???mgcos??F?0 ③
此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率
Fv?P ④
由③、④两式解得:
v?10m/s ⑤
(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B
I?vBl ⑥ RP?I2R ⑦
相关推荐: