第一范文网 - 专业文章范例文档资料分享平台

点线面的关系—教师版

来源:用户分享 时间:2025/5/26 0:56:29 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

启智明德,优享未来!

在Rt△BC′D中,C′G=

BC'?C'D33. ?BD2=

∴OG=

C?G2?C?2C'O3?22, .∴tan∠C′GO=

OG2即二面角C′BDA的正切值为2

2.

例16 如图15,三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角BB1CA的正弦值.

图15

解:由直三棱柱性质得平面ABC⊥平面BCC1B1,过A作AN⊥平面BCC1B1,垂足为N,则AN⊥平面BCC1B1(AN即为我们要找的垂线),在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA,则∠NQA即为二面角的平面角. ∵AB1在平面ABC内的射影为AB,CA⊥AB, ∴CA⊥B1A.AB=BB1=1,得AB1=

2.∵直线B1C与平面ABC成30°角,∴∠B1CB=30°,B1C=2. 2.∴AQ=1.

63.sin∠AQN=

在Rt△B1AC中,由勾股定理,得AC=

在Rt△BAC中,AB=1,AC= 练习:

2,得AN=

AN6=AQ3,即二面角BB1CA的正弦值为

63.

如图16,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2(1)证明:AM⊥PM; (2)求二面角PAMD的大小.

2,M为BC的中点.

图16 图17

(1)证明:如图17,取CD的中点E,连接PE、EM、EA, ∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

3.∵平面

PCD⊥平面ABCD,∴PE⊥平面ABCD.∵四边形ABCD是矩

形,∴△ADE、△ECM、△ABM均为直角三角形.由勾股定理可求得EM=

3,AM=6,AE=3,

∴EM2+AM2=AE2.∴AM⊥EM.又EM是PM在平面ABCD上的射影,∴∠AME=90°.∴AM⊥PM.

启智明德,优享未来!

(2)解:由(1)可知EM⊥AM,PM⊥AM,

∴∠PME是二面角PAMD的平面角.∴tan∠PME=∴二面角PAMD为45°.

PE3=1.∴∠PME=45°. ?EM3

搜索更多关于: 点线面的关系—教师版 的文档
点线面的关系—教师版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c01yyn8ewvd57ejb0pt8t_9.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top