有四个2,三个3,一个5,一个7和一个11。经排列为(5、99、24、 □□□×□=1995 14)和(55、27、56、2)。 练习三
1,下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。 □□×□□=1288
2,有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?
3,把40、45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。
例题4 王老师带领一班同学去植树,学生恰好分成4组。如果王老师和学生每人植树一样多,那么他们一共植了539棵。这个班有多少个学生?每人植树多少棵?
分析 根据每人植树棵数×人数=539棵,把539分解质因数。539=7×7×11,如果每人植7棵,这个班就有7×11-1=76人;如果每人植树11棵,这个班共有7×7-1=48人。 练习四
1,3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。
2,小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。小青买的电影票是几排几座?
3,把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920。这篮苹果共有多少个?
例题5 下面的算式里,□里数字各不相同,求这四个数字的和。 □□×□□=1995
分析 要使两个两位数的积等于1995,那么,这两个数的积应和1995有相同的质因数。1995=3×5×7×19,可以有35×57=1995和21×95=1995。因为要满足“数字各不相同”的条件,所以取21×95=1995,这四个数字的和是:2+1+9+5=17。 练习五
1,在下面算式的框内,各填入一个数字,使算式成立。
2,有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。
3,有三个自然数a,b,c,已知a×b=35,b×c=55,a×c=77,求三个数之积是多少?
第二十四周 分解质因数(二) 专题简析:
许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。
例题1 三个质数的和是80,这三个数的积最大可以是多少?
分析 三个质数相加的和是偶数,必有一个质数是2。80-2=78,剩下两个质数的和是78,而且要使它的积最大,只能是41和37。因此,这三个质数是2、37和41。 最大积是2×37×41=3034 练习一
1,有三个质数,它们的乘积是1001,这三个质数各是多少?
2,张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。求张明的成绩、名次和年龄分别是多少? 3,写出若干个连续的自然数,使它们的积是15120。
例题2 长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?
分析 这道题如果用方程来解会比较麻烦,我们可以把375分解质因数看一看。375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25米,宽是5×3=15米,它们的和是40米。 练习二
1,237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。
2,有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,这4个孩子中最大的几岁? 3,有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,36
求这块长方形场地的周长。
例题3 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,练习五
1,求2310的约数中,除它本身以外最大的约数是多少?
如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵?
分析 根据每人种树棵数×参加人数=1073,把1073分解质因数:1073=29×37,再根据学生恰好平均分成三组可知:参加种树的人数是3的倍数多1,由于只有37比3的倍数多1,所以有37人,平均每人种29棵。 练习三
1,一个长方体的长、宽、高是三个连续的自然数。已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?
2,老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支。每支钢笔原价多少元?
3,王老师带同学们擦玻璃,同学们恰好平均分成3组。如果师生每人擦的块数同样多,一共擦111块,那么,平均每人擦了多少块? 例题4 把155/186和221/187约分。
分析 这两个分数的分子和分母都比较大,不能一眼看出分子和分母的公约数。我们可以先求出分子与分母的差,如果差是质数,就直接用这个质数去约分;如果差是合数,就把这个合数分解质因数,然后用其中的一个质数去约分。
(1)186-155=31,31是质数,用31约分得:155/186=5/6; (2)221-187=34,34=2×17,用17约分得:221/187=13/11。 练习四
请用上面的方法把下面的几个分数约分。 46/69 143/117 247/323 161/253 例题5 小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张。小明买了多少张画片?
分析 根据题意可知:画片的单价×张数=216分,它们乘积的质因数和216的质因数相同。我们可以先把216分解质因数,再写成两数相乘的形式分析:216=2^3×3^3=8×27=9×24,显然,216分可以买8分的画片27张,也可以买9分的画片24张。所以,小明买了24张画片,符合题意。
2,自然数a乘以2376,所得的积正好是自然数b的平方,求a最小是多少?
3,将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍,求获奖人数和每人分得的钱数。 第25周 最大公约数 专题简析:
几个数公有的约数叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数。我们可以把自然数a、b的最公约数记作(a、b),如果(a、b)=1,则a和b互质。
求几个数的最大公约数可以用分解质因数和短除法等方法。
例题1 一张长方形的纸,长7分米5厘米,宽6分米。现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?
分析 7分米5厘米=75厘米,6分米=60厘米。因为裁成的正方形的边长必须能同时整除75和60,所以边长是75和60的公约数。75和60的公约数有1、3、5、15,所以有4种裁法。 如果要使正方形面积最大,那么边长也应该最大,应该取75和60的最大公约数15作为正方形的边长,所以可以裁(75÷15)×(60÷15)=20块。 练习一
1,把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?
2,一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米? 3,将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?
例题2 一个长方体木块,长2.7米,宽1.8分米,高1.5分米。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?
分析 2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米。要把长
37
方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数。现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数。
(270,18,15)=3,3厘米=0.3分米 练习二
1,一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?
2,有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?
3,五年级三个班分别有24人、36人、42人参加体育活动,要把他们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班各可以分几组?
例题3 有三根钢管,它们的长度分别是240厘米、200厘米和480厘米,如果把它们截成同样长的小段,每小段最长可以是多少厘米? 分析 要把三根钢管截成同样长的小段,每小段的长度数应该是240、200和480的公约数,而每小段要取最长,也就是求240、200和480的最大公约数。240、200和480的最大公约数是40,所以每小段最长是40厘米。 练习三
1,有一个长方体木块,长60厘米、宽40厘米,高24厘米。如果要切成同样大小的小正方体,这些正方体的棱长最长是多少厘米?
2,用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且最后没有剩余,这些正方形的边长最长是多少?
3,工人加工了三批零件,每加工一批零件,除了王师傅比其他工人多加工若干个外,其他工人加工的都同样多。已知他们第一批共加工2100个,其中王师傅比每个工人多加工7个;第二批加工1800个,其中王师傅比每个工人多加工6个;第三批加工1600个,其中王师傅比每个工人多加工13个。这批工人最多有多少人?
例题4 一条道路由甲村经过乙村到丙村。已知甲、乙村相距360米,乙、丙村相距675米。现在准备在路边裁树,要求相邻两棵树之间距离
相等,并在甲、乙两村和乙、丙两村的中点都要种上树,求相邻两棵树之间的距离最多是多少米?
分析 由于甲乙、乙丙的两村中点各要种上一棵树,所要要将360÷2=180米、675÷2=337.5米平均分成若干段,并且使每段的长度最长。因为(675、360)=45,而180=360÷2,337.5=675÷2,所以,45÷2=22.5,即相邻两棵树之间距离最多是22.5米。 练习四
1,一条公路由A经B到C。已知A、B相距300米,B、C相距215米。现在路边植树,要求相邻两树间的距离相等,并在B点及AB、BC的中点上都要植一棵,那么两树间的距离最多有多少米?
2,有336支铅笔,252块橡皮,210个文具盒,用这些文具,最多可以分成多少份同样的礼物?在每份礼物中,铅笔、橡皮、文具盒各有多少? 3,甲数是36,甲、乙两数的最小公倍数是288,最大公约数是4,乙数是多少?
例题5 用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且最后没有剩余,这些正方形的边长最长是多少? 分析 前面的例题已经告诉了我们,解决这道题只要求出长方形长和宽的最大公约数就行了。但是这题中,长和宽的数比较大,最大公约数比较难求出,这里再介绍一种求两个数的最大公约数的方法。 第一步:1072÷469,余134; 第二步:469÷134,余67;
第三步:134÷67,没有余数,所以用67毫米为正方形的边长来剪,正好能剪(1072÷67)×(469÷67)=112个正方形,即这些正方形的边长最大是67毫米。
这种求两个较大数的最大公约数的方法叫辗转相除法。 练习五
1,用辗转相除法求568和1065的最大公约数。 2,试用辗转相除法判断1547与3135是否互质。 3,判断11111/15015是不是最简分数。 第二十六周 最小公倍数(一) 专题简析:
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫38
做这几个数的最小公倍数。自然数a、b的最小公倍数可以记作[a、b],1和40,也可以是5和8。当a和b是1和40时,所求的数是3×1=3当(a、b)=1时,[a、b]= a×b。
两个数的最大公约数和最小公倍数有着下列关系: 最大公约数×最小公倍数=两数的乘积 即(a、b)×[a、b]= a×b 要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。
例题1 两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少? 分析 根据“两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积”可先求出这两个数的乘积,再把这个积分解成两个数。根据题意:
当a1b1分别是1和6时,a、b分别为15×1=15,15×6=90;当a1b1分别是2和3时,a、b分别为15×2=20,15×3=45。所以,这两个数是15和90或者30和45。 练习一
1,两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?
2,两个数的最大公约数是12,最小公倍数是60,求这两个数的和是多少? 3,两个数的最大公约数是60,最小公倍数是720,其中一个数是180,另一个数是多少?
例题2 两个自然数的积是360,最小公倍数是120,这两个数各是多少?
分析 我们把这两个自然数称为甲数和乙数。因为甲、乙两数的积一定等于甲、乙两数的最大公约数与最小公倍数的积。根据这一规律,我们可以求出这两个数的最大公约数是360÷120=3。又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数,所以,a和b可以是
和3×40=120;当a和b是5和8时,所求的数是3×5=15和3×8=24。 练习二
1,求36和24的最大公约数和最小公倍数的乘积。
2,已知两个数的积是3072,最大公约数是16,求这两个数。 3,已知两个数的最大公约数是13,最小公倍数是78,求这两个数的差。 例题3 甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次。甲3天去一次,乙4天去一次,丙5天去一次。有一天,他们三人恰好在图书馆相会,问至少再过多少天他们三人又在图书馆相会? 分析 从第一次三人在图书馆相会到下一次再次相会,相隔的天数应该是3、4、5的最小公倍数。因为3、4、5的最小公倍数是60,所以至少再过60天他们三人又在图书馆相会。 练习三
1,1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。当这三种路线的车同时发车后,至少要过多少分钟又这三种路线的车同时发车? 2,甲、乙、丙从同一起点出发沿同一方向在圆形跑道上跑步,甲跑一圈用120秒,乙跑一圈用80秒,丙跑一圈用100秒。问:再过多少时间三人第二次同时从起点出发?
3,五年级一班的同学每周一都要去看军属张爷爷,二班的同学每6天去看一次,三班的同学每两周去看一次。如果“六一”儿童节三个班的同学同一天去看张爷爷,那么,再过多少天他们三个班的同学再次同一天去张爷爷家?
例题4 一块砖长20厘米,宽12厘米,厚6厘米。要堆成正方体至少需要这样的砖头多少块?
分析 把若干个长方体叠成正方体,它的棱长应是长方体长、宽、高的公倍数。现在要求长方体砖块最少,它的棱长应是长方体长、宽、高的最小公倍数,求出正方体棱长后,再根据正方体与长方体体积之间的关系就能求出长方体砖的块数。 练习四
1,用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块? 39
2,有200块长6厘米、宽4厘米、高3厘米的长方体木块,要把这些木块堆成一个尽可能大的正方体,这个正方体的体积是多少立方厘米? 3,一个长方体长2.7米、宽1.8分米、高1.5分米,要把它切成大小相等的正方体小块,不许有剩余,这些小正方体的棱长最多是多少分米? 例题5 甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一地点同时同方向跑步,经过多少时间三人又同时从出发点出发?
分析 甲跑一圈需要600÷3=200秒,乙跑一圈需要600÷4=150秒,丙跑一圈需要600÷2=300秒。要使三人再次从出发点一齐出发,经过的时间一定是200、150和300的最小公倍数。200、150和300的最小公倍数是600,所以,经过600秒后三人又同时从出发点出发。 练习五 1,有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇;若二人同时同地出发,同向而行,则10分钟后第一次相遇。已知甲比乙快,求二人的速度。
2,一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,乙每秒行6米,丙每秒行5米。至少经过几分钟,三人再次从原出发点同时出发? 3,甲、乙、丙三人在一条长240米的跑道上来回跑步,甲每秒跑4米,乙每秒跑5米,丙每秒跑3米。若三人同时从一端出发,再经过多少时间三人又从此处同时出发? 第二十七周 最小公倍数(二) 专题简析:
最小公倍数的应用题,解题方法比较独特。当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。 例题1 有一个自然数,被10除余7,被7除余4,被4除余1。这个自然数最小是多少?
分析 根据已知条件可知,假如把这个自然数增加3,所得的数就正好能被10、7和4这三个数整除,即10、7和4的最小公倍数,然后再减去3就能得到所求的数了。 [10,7,4]=140
140-3=137
即:这个自然数最小是137。 练习一
1,学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少多少人?
2,一个数能被3、5、7整除,但被11除余1。这个数最小是多少? 3,一袋糖,平均分给15个小朋友或20个小朋友后,最后都余下5块。这袋糖至少有多少块?
例题2 有一批水果,总数在1000个以内。如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。这批水果共有多少个?
分析 根据题意可知,这批水果再增加2个后,每24个装一箱,每28个装一箱或每32个装一箱都能装整箱数,也就是说,只要把这批水果增加2个,就正好是24、28和32的公倍数。我们可以先求出24、28和32的最小公倍数672,再根据“总数在1000以内”确定水果总数。 [24,28,32]=672 672-2=670(个)
即:这批水果共有670个。 练习二
1,一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?
2,有一批乒乓球,总数在1000个以内。4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。这批乒乓球到底有多少个? 3,食堂买回一些油,用甲种桶装最后一桶少3千克,用乙种桶装最后一桶只装了半桶油,用丙种桶装最后一桶少7千克。如果甲种桶每桶能装8千克,乙种桶每桶能装10千克,丙种桶每桶能装12千克,那么,食堂至少买回多少千克油?
例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?
分析 由已知条件可知:这盒棋子只要增加1颗,就正好是4、6、15的公倍数。换句话说,这盒棋子比4、6、15的最小公倍数少1。我们可以先求4、6、15的最小公倍数,然后再根据“这盒棋子在150至20040
相关推荐: