第一范文网 - 专业文章范例文档资料分享平台

(新课标)2020高考数学大一轮复习题组层级快练9指数函数(文)(含解析)

来源:用户分享 时间:2025/8/27 1:47:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

题组层级快练(九)

1.给出下列结论: 3

①当a<0时,(a2

)2=a3

②nan=|a|(n>1,n∈N*

,n为偶数);

1

③函数f(x)=(x-2)2-(3x-7)0

的定义域是{x|x≥2且x≠73};

④若5a

=0.3,0.7b

=0.8,则ab>0. 其中正确的是( ) A.①② B.②③ C.③④ D.②④

答案 B

3

解析 (a2)2>0,a3

<0,故①错,

∵0<5a<1,0<0.7b

<1,∴a<0,b>0,∴ab<0.故④错.

2.当x>0时,函数f(x)=(a2

-1)x

的值总大于1,则实数a的取值范围是( ) A.1<|a|<2 B.|a|<1 C.|a|>2 D.|a|<2

答案 C

3.(2019·北京大兴区期末)下列函数中值域为正实数集的是( ) A.y=-5x

B.y=(11-x

3)

C.y=(1x

2

)-1 D.y=3|x|

答案 B

4.若函数f(x)=(a+1

ex-1)cosx是奇函数,则常数a的值等于( )

A.-1 B.1 C.-12

D.12

答案 D

5.(2017·北京)已知函数f(x)=3x

-(1x3),则f(x)( )

A.是奇函数,且在R上是增函数

B.是偶函数,且在R上是增函数

1

C.是奇函数,且在R上是减函数 答案 A

D.是偶函数,且在R上是减函数

1-x1x1x-xxx

解析 ∵f(-x)=3-()=()-3=-[3-()]=-f(x),∴f(x)为奇函数.又函数

3331x1xxx

y1=3在R上为增函数,y2=()在R上为减函数,∴y=3-()在R上为增函数.故选A.

336.在同一直角坐标系中,函数f(x)=2A.y轴对称 C.原点对称 答案 A

1x-1

解析 g(x)=(),分别画出f(x),g(x)的图像知,选A.

2

7.当x∈[-2,2]时,a<2(a>0,且a≠1),则实数a的取值范围是( ) A.(1,2) C.(

2

,1)∪(1,2) 2

B.(

2

,1) 2

x

x+1

与g(x)=2

1-x

的图像关于( )

B.x轴对称 D.直线y=x对称

D.(0,1)∪(1,2)

答案 C

解析 x∈[-2,2]时,a<2(a>0,且a≠1).若a>1,y=a是一个增函数,则有a<2,可得a<2,故有1

2

,1)∪(1,2).故选C. 2

x

-2

x

x

2

22,故有22

1x

8.函数f(x)=a-(a>0,a≠1)的图像可能是( )

a

答案 D

11xx

解析 通解 当a>1时,将y=a的图像向下平移个单位长度得f(x)=a-的图像,A,B

aa111xx

都不符合;当0

aaa于1,故选D.

优解 函数f(x)的图像恒过点(-1,0),只有选项D中的图像符合.

9.(2015·山东,文)设a=0.6,b=0.6,c=1.5,则a,b,c的大小关系是( )

2

0.6

1.5

0.6

A.a

B.a

解析 由指数函数y=0.6在(0,+∞)上单调递减,可知0.6<0.6,由幂函数y=x在(0,+∞)上单调递增,可知0.6<1.5,所以b

2

0.6

0.6

x1.50.60.6

答案 C

解析 易知函数f(x)为偶函数,因此排除A,B;又因为f(x)=e1-x>0,故排除D,因此选C.

ax

11.不论a为何值时,函数y=(a-1)2-恒过一定点,则这个定点的坐标是( )

21

A.(1,-) 21

C.(-1,-)

2答案 C

a11axxxxx

解析 y=(a-1)2-=a(2-)-2,令2-=0,得x=-1,则函数y=(a-1)2-恒

22221

过定点(-1,-).

2

12.若关于x的方程|a-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( ) A.(0,1)∪(1,+∞) C.(1,+∞) 答案 D

解析 方程|a-1|=2a(a>0且a≠1)有两个不等实数根?函数y=|a-1|与y=2a的图像有两个交点.

①当0

所以0<2a<1,即0

2②当a>1时,如图②, 而y=2a>1不符合要求.

x

x

x

2

1

B.(1,)

21

D.(-1,)

2

B.(0,1) 1

D.(0,)

2

3

1

综上,0

2

13.已知函数f(x)=a+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=________. 3答案 -

2

?f(-1)=0,?

解析 ①当0

?f(0)=-1,?

x

??a+b=0,?a=,?

?0解得?2??a+b=-1,?

-1

3

此时a+b=-.

2

?b=-2,

1

?f(-1)=-1,?

②当a>1时,函数f(x)在[-1,0]上单调递增,由题意可得?即

?f(0)=0,???a+b=-1,3

?0显然无解.所以a+b=-.

2?a+b=0,?

??4,x≥0,

14.(2019·福州质检)已知实数a≠1,函数f(x)=?a-x若f(1-a)=f(a-1),则a

?2,x<0,?

x

-1

的值为________. 1

答案

2

解析 当a<1时,4

1-a

11

=2,a=,当a>1时,代入不成立.

2

x

15.(2019·衡水中学调研卷)已知函数f(x)=|2-1|,af(c)>f(b),则下列结论中,一定成立的是________.

①a<0,b<0,c<0;②a<0,b≥0,c>0;③2<2;④2+2<2. 答案 ④

解析 作出函数图像,由图像可知a<0时,b的符号不确定,1>c>0,故①②错;因为f(a)=|2-1|,f(c)=|2-1|,所以|2-1|>|2-1|,即1-2>2-1,故2+2<2,④成立;又2+2>22

a

c

a+c

a

c

a

c

a

c

a

c

-a

c

a

c

,所以2

a+c

<1,所以a+c<0,所以-a>c,所以2>2,③不成立.

-ac

4

16.函数y=(14)x-(12)x

+1在[-3,2]上的值域是________.

答案 [3

4

,57]

解析 y=(14)x-(12

)x

+1

=[(12)x]2-(12)x+1=[(1x123

2)-2]+4,

因为x∈[-3,2],所以14≤(1x

2

)≤8.

当(12)x=12时,y31x

min=4,当(2)=8时,ymax=57. 所以函数的值域为[3

4

,57].

17.是否存在实数a,使函数y=a2x

+2ax

-1(a>0且a≠1)在[-1,1]上的最大值是14? 答案 a=3或a=1

3

解析 令t=ax

,则y=t2

+2t-1. (1)当a>1时,∵x∈[-1,1], ∴ax

∈[11a,a],即t∈[a

,a].

∴y=t2+2t-1=(t+1)2

-2在[1a,a]上是增函数(对称轴t=-1<1a).

∴当t=a时,y2

max=(a+1)-2=14. ∴a=3或a=-5.∵a>1,∴a=3. (2)当0

a

].

∵y=(t+1)2

-2在[a,1a]上是增函数,

∴y12

max=(a

+1)-2=14.

∴a=1113或a=-5.∵0

. 18.已知函数f(x)=2x

+k·2-x,k∈R. (1)若函数f(x)为奇函数,求实数k的值;

(2)若对任意的x∈[0,+∞)都有f(x)>2-x

成立,求实数k的取值范围.

5

答案 (1)k=-1 (2)(0,+∞)

解析 (1)∵f(x)=2+k·2是奇函数,∴f(-x)=-f(x),x∈R,即2+k·2=-(2+k·2).∴(1+k)+(k+1)·2=0对一切x∈R恒成立,∴k=-1.

(2)∵x∈[0,+∞),均有f(x)>2,即2+k·2>2成立,∴1-k<2对x≥0恒成立,∴1-k<(2)min.∵y=2在[0,+∞)上单调递增,∴(2)min=1,∴k>0.∴实数k的取值范围是(0,+∞).

2x

2x

2x

-x

x

-x

-x

2x

-x

2x

x

-x

-x

x

x

6

(新课标)2020高考数学大一轮复习题组层级快练9指数函数(文)(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c03an27wroa6k2tg1xudp48fsc2a7k200rgl_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top