高中数学必做100题—选修2-1
时量:120分钟 班级: 姓名: 计分:
(说明:《选修2-1》共精选12题,“◎”为教材精选(或改编),“☆”为《精讲精练.选修2-1》精选) 4?x22?2 , q:x?2x?1?m?0(m?0), 若?p是?q的必要不充分条件,求实数m的取3值范围. (☆P6 9)
1. 已知p:?2?
2. 点M(x,y)与定点F(4,0)的距离和它到直线l:x?6)
254的距离的比是常数,求M的轨迹.(◎P47 例455x2y23. 双曲线的离心率等于,且与椭圆??1有公共焦点,求此双曲线的方程. (◎P62 B1)
294
4. 倾斜角
5. 当?从0?到180?变化时,方程x2?y2cos??1表示的曲线的形状怎样变换?(◎P80 4)
6. 一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米. (1)建立如图所示的平面直角坐标系xoy,试求拱桥所在抛物线的方程; (2)若一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?
7. 已知椭圆C的焦点分别为F1(?22,0)和F2(22,0),长轴长为6,设直线y=x+2交椭圆C于
?的直线l过抛物线y2?4x焦点,且与抛物线相交于A、B两点,求线段AB长. (◎P69 例4) 4A、B两点. 求:(1)线段AB的中点坐标; (2)弦AB的长.
37
F1 O 日累月积见功勋,山穷水尽惜寸阴。—华罗庚 M F2 高中数学必做100题◆选修2-1
8. 在抛物线y2?4x上求一点P,使得点P到直线l:x?y?4?0的距离最短, 并求最短距离.
x2y29. 点M是椭圆??1上的一点,F1、F2是左右焦点,∠F1MF2=60o,求△F1MF2的面积.
6436
10. (06年江苏卷)已知三点P(5,2)、F1(-6,0)、F2(6,0). (☆P21 例4)
(1)求以F1、F2为焦点且过点P的椭圆的标准方程; (2)设点P、F1、F2关于直线y=x的对称点分别为P?、F1'、F2',求以F1'、F2'为焦点且过点P?的双曲线的标准方程。
11.课本2-1P112 习题A6
12. 课本2-1P114 习题 B3
相关推荐: