青海师范大学附属第二中学高中数学 第2章点 直线 平面之间的位置关
系复习课 新人教A版必修2
题型一 几何中共点、共线、共面问题 1.证明共面问题
证明共面问题,一般有两种证法:一是由某些元素确定一个平面,再证明其余元素在这个平面内;二是分别由不同元素确定若干个平面,再证明这些平面重合. 2.证明三点共线问题
证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上. 3.证明三线共点问题
证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上的问题.
例1 如图所示,空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.
求证:(1)E、F、G、H四点共面;(2)GE与HF的交点在直线AC上.
跟踪训练1 如图,O是正方体ABCD-A1B1C1D1上底面ABCD的中心,M是正方体对角线AC1和截面A1BD的交点.求证:O、M、A1三点共线.
题型二 空间中的平行问题
1.判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);(3)利用面面平行的性质定理(α∥β,a?α?a∥β);(4)利用面面平行的性质(α∥β,a?β,a∥α?a∥β).
2.证明面面平行的方法:(1)利用面面平行的定义;(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
例2 如图,E、F、G、H分别是正方体ABCD—A1B1C1D1的棱BC、CC1、C1D1、AA1的中点,求证:(1)GE∥平面BB1D1D;(2)平面BDF∥平面B1D1H.
跟踪训练2 如图,△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,CE=CA=2BD,M是EA的中点,N是EC的中点,求证:平面DMN∥平面ABC.
题型三 空间中的垂直关系 空间垂直关系的判定方法: (1)判定线线垂直的方法:
①计算所成的角为90°(包括平面角和异面直线所成的角); ②线面垂直的性质(若a⊥α,b?α,则a⊥b). (2)判定线面垂直的方法:
①线面垂直定义(一般不易验证任意性);
②线面垂直的判定定理(a⊥b,a⊥c,b?α,c?α,b∩c=M?a⊥α); ③平行线垂直平面的传递性质(a∥b,b⊥α?a⊥α);
④面面垂直的性质(α⊥β,α∩β=l,a?β,a⊥l?a⊥α); ⑤面面平行的性质(a⊥α,α∥β?a⊥β);
⑥面面垂直的性质(α∩β=l,α⊥γ,β⊥γ?l⊥γ). (3)面面垂直的判定方法:
①根据定义(作两平面构成二面角的平面角,计算其为90°); ②面面垂直的判定定理(a⊥β,a?α?α⊥β).
例3 如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.
跟踪训练3 如图,A,B,C,D为空间四点.在△ABC中,AB=2, AC=BC=2,等边△ADB以AB为轴运动. (1)当平面ADB⊥平面ABC时,求CD;
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
题型四 空间角问题
1.求异面直线所成的角常用平移转化法(转化为相交直线的夹角). 2.求直线与平面所成的角常用射影转化法(即作垂线、找射影).
3.二面角的平面角的作法常有三种:(1)定义法;(2)垂线法;(3)垂面法. 例4 在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求证:BD⊥平面AED;(2)求二面角F-BD-C的余弦值.
跟踪训练4 如图,正方体的棱长为1,B′C∩BC′=O,求:
(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角的度数.
相关推荐: