1
当n为奇数时,an-n=-an-an-1,
21
即2an-n=-an-1,
2
11
所以an-1=n-1,此时n-1为偶数,所以若n为偶数,则an=n. 22所以数列{an}的通项公式为 1-??2,n为奇数,a=?1
??2,n为偶数.
n+1nn
所以数列{Sn}的前9项和为S1+S2+S3+…+S9=9a1+8a2+7a3+6a4+…+3a7+2a8+a9
1??1?5?
2×?1-???2??4??11111
=(9a1+8a2)+(7a3+6a4)+…+(3a7+2a8)+a9=-2-4-6-8-10=-=
222221
1-4341-. 1 024
341
答案:- 1 024
5.已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2). (1)求证:{an+1+2an}是等比数列; (2)求数列{an}的通项公式;
(3)设3bn=n(3-an),求|b1|+|b2|+…+|bn|.
解:(1)证明:∵an+1=an+6an-1(n≥2).∴an+1+2an=3an+6an-1=3(an+2an-1)(n≥2). ∵a1=5,a2=5,∴a2+2a1=15, ∴an+2an-1≠0(n≥2), ∴
nnan+1+2an=3(n≥2).
an+2an-1
∴数列{an+1+2an}是以15为首项,3为公比的等比数列. (2)由(1)得an+1+2an=15×3∴an+1-3
n+1
nn-1
=5×3.则an+1=-2an+5×3,
nn=-2(an-3).
n又∵a1-3=2,∴an-3≠0.
∴{an-3}是以2为首项,-2为公比的等比数列. ∴an-3=2×(-2)即an=2×(-2)
nn-1
nn-1
n,
+3.
nn(3)由(2)及3bn=n(3-an)可得,
3bn=-n(an-3)=-n[2×(-2)=n(-2),
nnnn-1
]
?2?n?2?n∴bn=n?-?,∴|bn|=n??.
?3??3?
设Tn=|b1|+|b2|+…+|bn|, 2?2?2?2?n则Tn=+2×??+…+n??,①
3?3??3?
22?2?2?2?3?2?n?2?n+1
①×,得Tn=??+2×??+…+(n-1)??+n??,②
33?3??3??3??3?12?2?2?2?n?2?n+1
①-②,得Tn=+??+…+??-n??
33?3??3??3?
?2?n+1?2?n+1
=2-3×??-n??
?3??3??2?n+1
=2-(n+3)??
?3??2?n∴Tn=6-2(n+3)??.
?3?
相关推荐: