ak?1?ak?2?1,也就是说当n?k?1时,an?an?1?1也成立;
根据(ⅰ)、(ⅱ)可得对任意的正整数n,an?an?1?1恒成立. (Ⅲ)证明:由f(x)?x?xlnx.an?1?f(an)可得
?a1?b??ailnai a?b?a?b?alnak?1kkki?11, 若存在某i≤k满足ai?b,则由(Ⅱ)知:ak?1?b?ai?b≥0 2, 若对任意i≤k都有ai?b,则a ?b?a?b?alnak?1kkkk?a1?b??ailnaii?1k?a1?b??ailnbi?1k?a1?b?(?ai)lnbi?1k?a?b?kalnb 11?0,即ak?1?b成立. ?a?b?(a?b)?a?b?kalnb?111128、(2008全国Ⅱ)设函数f(x)?(Ⅰ)求f(x)的单调区间;
(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围. 【解析】(Ⅰ)f?(x)?sinx.
2?cosx(2?cosx)cosx?sinx(?sinx)2cosx?1?. ·························· 2分
(2?cosx)2(2?cosx)22π2π1?x?2kπ?(k?Z)时,cosx??,即f?(x)?0; 3322π4π1?x?2kπ?当2kπ?(k?Z)时,cosx??,即f?(x)?0. 332当2kπ?因此f(x)在每一个区间?2kπ???2π2π?,2kπ??(k?Z)上是增函数, 33?2π4π??·································· 6分 f(x)在每一个区间?2kπ?,2kπ??(k?Z)上是减函数. ·
33??(Ⅱ)令g(x)?ax?f(x),则
g?(x)?a?2cosx?1
(2?cosx)2?a?23? 22?cosx(2?cosx)11?1??3????a?.
3?2?cosx3?故当a≥21时,g?(x)≥0. 3又g(0)?0,所以当x≥0时,g(x)≥g(0)?0,即f(x)≤ax. ································ 9分 当0?a?1时,令h(x)?sinx?3ax,则h?(x)?cosx?3a. 3故当x??0,arccos3a?时,h?(x)?0. 因此h(x)在?0,arccos3a?上单调增加. 故当x?(0,arccos3a)时,h(x)?h(0)?0, 即sinx?3ax.
于是,当x?(0,arccos3a)时,f(x)?当a≤0时,有f?sinxsinx??ax.
2?cosx3π?π?1. ??0≥a??222???1?3??因此,a的取值范围是?,···························································································· 12分 ???.·
29、(2008北京高考)知函数f(x)?2x?b,求导函数f?(x),并确定f(x)的单调区间.
(x?1)22(x?1)2?(2x?b)?2(x?1)【解析】f?(x)?
(x?1)4??2x?2b?2
(x?1)32[x?(b?1)]. 3(x?1)??令f?(x)?0,得x?b?1.
当b?1?1,即b?2时,f?(x)的变化情况如下表:
x (??,b?1) b?1 0 (b?11), (1,??)f?(x)? ? ?
相关推荐: