这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成∠AOB= ,这是错误的. ※3. 圆周角的定义:
顶点在圆上,并且两边都与圆相交的角,叫做圆周角. ※4. 圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半.
※推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; ※推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径; ※四. 确定圆的条件:
※1. 理解确定一个圆必须的具备两个条件:
圆心和半径,圆心决定圆的位置,半径决定圆的大小.
经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上. ※2. 经过三点作圆要分两种情况:
(1) 经过同一直线上的三点不能作圆.
(2)经过不在同一直线上的三点,能且仅能作一个圆. ※定理: 不在同一直线上的三个点确定一个圆.
※3. 三角形的外接圆、三角形的外心、圆的内接三角形的概念:
(1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个
三角形叫做圆的内接三角形.
(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心. (3)三角形的外心的性质:三角形外心到三顶点的距离相等. 五. 直线与圆的位置关系
※1. 直线和圆相交、相切相离的定义:
(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.
(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点. (3)相离: 直线和圆没有公共点时,叫做直线和圆相离. ※2. 直线与圆的位置关系的数量特征:
设⊙O的半径为r,圆心O到直线的距离为d;
①d
※3. 切线的总判定定理:
经过半径的外端并且垂直于这个条半径的直线是圆的切线. ※4. 切线的性质定理:
圆的切线垂直于过切点的半径.
※推论1 经过圆心且垂直于切线的直线必经过切点. ※推论2 经过切点且垂直于切线的直线必经过圆心.
※分析性质定理及两个推论的条件和结论间的关系,可得如下结论: 如果一条直线具备下列三个条件中的任意两个,就可推出第三个. ①垂直于切线; ②过切点; ③过圆心.
※5. 三角形的内切圆、内心、圆的外切三角形的概念.
和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.
※6. 三角形内心的性质:
(1)三角形的内心到三边的距离相等.
(2)过三角形顶点和内心的射线平分三角形的内角.
由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.
六. 圆和圆的位置关系.
※1. 外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.
第31页
(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.
(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.
这个惟一的公共点叫做切点.
(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.
(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个
惟一的公共点叫做切点.
(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特
例.
※2. 两圆位置关系的性质与判定:
(1)两圆外离 <===> d>R+r (2)两圆外切 <===> d=R+r
(3)两圆相交 <===> R-r
如果两个圆相切,那么切点一定在连心线上. ※4. 相交两圆的性质:
相交两圆的连心线垂直平分公共弦.
七. 弧长及扇形的面积 ※1. 圆周长公式:
圆周长C=2?R (R表示圆的半径) ※2. 弧长公式:
弧长l?n?R (R表示圆的半径, n表示弧所对的圆心角的度数) 180※3. 扇形定义:
一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形. ※4. 弓形定义:
由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. ※5. 圆的面积公式.
圆的面积S??R (R表示圆的半径) ※6. 扇形的面积公式: 扇形的面积S扇形2n?R2? (R表示圆的半径, n表示弧所对的圆心角的度数) 360※弓形的面积公式:(如图5) A O BOAOBB(1), S弓形?S扇形?S三角形 A当弓形所含的弧是劣弧时S弓形(2)当弓形所含的弧是优弧时, 图5 ?S扇形?S三角形
(3)当弓形所含的弧是半圆时, S弓形?CCC12?R?S扇形 2八. 圆锥的有关概念:
※1. 圆锥可以看作是一个直角三角形绕着直角边所在的直线旋转一周而形成的图形,另一条直角边旋转而成的面叫做
第32页
圆锥的底面,斜边旋转而成的面叫做圆锥的侧面. ※2. 圆锥的侧面展开图与侧面积计算:
圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线长、弧长是圆锥底面圆的周长、圆心是圆锥的顶点.
如果设圆锥底面半径为r,侧面母线长(扇形半径)是l, 底面圆周长(扇形弧长)为c,那么它的侧面积是:
11S侧?cl??2?rl??rl
22S表?S侧?S底面??rl??r2??r(r?l)
_ A¤九. 与圆有关的辅助线 _ O1.如圆中有弦的条件,常作弦心距,或过弦的一端作半径为辅助线. 2.如圆中有直径的条件,可作出直径上的圆周角.
_ B3.如一个圆有切线的条件,常作过切点的半径(或直径)为辅助线.
_ 6 图 4.若条件交代了某点是切点时,连结圆心和切点是最常用的辅助线. ¤十. 圆内接四边形
若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆. 圆内接四边形的特征: ①圆内接四边形的对角互补;
②圆内接四边形任意一个外角等于它的内错角.
_ P第33页
相关推荐: