即证:bc?ac?ab?a2?b2?c2; 即:2bc?2ac?2ab?2a2?2b2?2c2; 2a2?2b2?2c2?2bc?2ac?2ab…0
(a?b)2?(a?c)2?(b?c)2…0;
Qa,b,c为正数,且满足abc?1.
?(a?b)2…0;(a?c)2…0;(b?c)2…0恒成立;当且仅当:a?b?c?1时取等号. 0得证. 即(a?b)2?(a?c)2?(b?c)2…故
1112???a?b2?c2得证. abc24成立; (2)证(a?b)3?(b?c)3?(c?a)3…即:已知a,b,c为正数,且满足abc?1. (a?b)为正数;(b?c)为正数;(c?a)为正数;
(a?b)3?(b?c)3?(c?a)3…3(a?b)g(b?c)g(c?a);
当且仅当(a?b)?(b?c)?(c?a)时取等号;即:a?b?c?1时取等号;
Qa,b,c为正数,且满足abc?1.
(a?b)…2ab;(b?c)…2ac; 2bc;(c?a)…当且仅当a?b,b?c;c?a时取等号;即:a?b?c?1时取等号;
?(a?b)3?(b?c)3?(c?a)3厖3(a?b)g(b?c)g(c?a)3?8abgbcgac?24abc?24;
当且仅当a?b?c?1时取等号;
24.得证. 故(a?b)3?(b?c)3?(c?a)3…故得证.
第16页(共16页)
相关推荐: