第一范文网 - 专业文章范例文档资料分享平台

2020年中考数学压轴题专项训练 圆的综合

来源:用户分享 时间:2025/8/24 13:37:08 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2020年数学中考压轴题专项训练:圆的综合

1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC. (1)求证:BC是⊙O的切线;

(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)

(1)证明:连接OD,

∵AD平分∠BAC, ∴∠BAD=∠DAC, ∵AO=DO, ∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∴AC∥OD, ∵∠ACD=90°, ∴OD⊥BC, ∴BC与⊙O相切; (2)解:连接OE,ED,

∵∠BAC=60°,OE=OA, ∴△OAE为等边三角形, ∴∠AOE=60°, ∴∠ADE=30°,

又∵∠OAD=∠BAC=30°, ∴∠ADE=∠OAD, ∴ED∥AO,

∴四边形OAED是菱形, ∴OE⊥AD,且AM=DM,EM=OM, ∴S△AED=S△AOD,

∴阴影部分的面积=S扇形ODE=

2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.

(1)若∠BCE=∠BAC,求证:CE是⊙O的切线; (2)若AD=4,BC=3,求弦AC的长.

=π.

(1)证明:连接OC, ∵AB是⊙O的直径, ∴∠ACB=90°,

∴∠ACO+∠BCO=90°, ∵OA=OC, ∴∠OAC=∠OCA, ∵∠BAC=∠BCE, ∴∠ACO=∠BCE, ∴∠BCE+∠BCO=90°, ∴∠OCE=90°, ∴CE是⊙O的切线; (2)解:连接BD,

∵∠ACB的平分线交⊙O于点D, ∴∠ACD=∠BCD, ∴

∴AD=BD, ∵AB是⊙O的直径, ∴∠ADB=90°,

∴△ADB是等腰直角三角形, ∴AB=

AD=4,

∵BC=3, ∴AC=

3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线;

(2)∠C=45°,⊙O的半径为2,求阴影部分面积.

2020年中考数学压轴题专项训练 圆的综合.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c06qn49ly5r721et5ixox47ty70kcsx004zh_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top