所以S?FCD1k2?2, ?CD?d?18?22?3k2(求面积的另法:将直线l与y轴交点(0,4)记为E,则S?FCD?1EF?|x3?x4| 23k2?22) ??(x3?x4)?4x3x4,也可得到S?FCD?18?22?3k2设k?2?t?0,则S?FCD?218t18t36, ??3t2?823t2?84当且仅当t?814336,即k??时,S?OCD有最大值.
34321.(本小题满分12分)
解:(Ⅰ)要使f(x)<g(x)恒成立,即使2aex?1?2alnx?b2?2e2x?2?2lnx?2b22?a成立,
2整理成关于a的二次不等式a?2(e只要保证△<0, ??4(ex?12x?1?lnx)a?(2e2x?2?2lnx?2bb?)?0, 222?lnx)?4(2e22x?2?2lnx?112bb?)??4e2x?2?4ln2x?8ex?1lnx?2b2?2b?0, 2211222整理为e2x?2?ln2x?2ex?1lnx?b2?b?0,(ex?1?lnx)2?b2?b (i)
22下面探究(i)式成立的条件,令t(x)?ex?1?lnx,t?(x)?ex?1?1,t?(1)?0,当x?(0,1)时,t?(x)?0,t(x)x单调递减;当x?(1,??)时,t?(x)?0,t(x)单调递增,x=1时t(x)有最小值t(1)?1,
12b?212b?(t(x)min)2?(t(1))2?1,b2?b?2?0,?1?b?2.
实数b 的取值范围是(-1,2).
(Ⅱ)方程f(x)?2aex?1?ex化为ex?2alnx?5a?0, 令h(x)?ex?2alnx?5a,h?(x)?ex?2ax,
h?(x)在(0,+∞)上单调递增,h?(1)?e?2a?0, h?(2)?e2?a?0,
2ax0存在x0?(1,2)使h?(x0)?0,即ex0?,x0?2ae0x,h(x)在(0,x0)上单调递减,在(x0,??)上单调递增, h(x)在x0处取得最小值. h(x0)?e?2alnx0?5a?x02ax0?2aln2aex0?5a?2a(1x0?x0)?2aln2a?5a,
1x0?x0?(2,),h(x)??2aln2a<0,
520h(e)?e?3e?3?a?0,h(e)?e?9a?0,h(x)在(e,x0)和(x0,e)各有一个零点,故方程f(x)?2aex?1?ex2e2?32恒有两解.
22.(本小题满分10分) 解:(Ⅰ)直线l的参数方程为??x?1?tcos?,???(t为参数),???0,?.
?2??y?2?tsin?2x2y2曲线C的直角坐标方程为3x?4y?12,即??1,
432所以曲线C是焦点在x轴上的椭圆.
?x?1?tcos?,???(Ⅱ)将l的参数方程?(t为参数),???0,?代入曲线C的直角坐标方程为3x2?4y2?12
?2??y?2?tsin?得(3cos??4sin?)t?(6cos??16sin?)t?7?0,
222?PM?PN?t1?t2?得sin2??7?2, 223cos??4sin?1, 2???????0,? ,???
4?2?23.(本小题满分10分)
解:(Ⅰ)由x?2?3?6|,得?6?x?2?3?6, ∴?9?x?2?3,得不等式的解为?1?x?5 .
(Ⅱ)f(x)?x?2a?x?3??x?2a???x?3??2a?3,g(x)?x?2?3?3, 对任意的x2?R均存在x1?R,使得f(x2)?g(x1)成立,
??yy?f(x)???yy?g(x)?,
?2a?3?3,解得a?0或a??3,即实数a的取值范围为:a?0或a??3.
相关推荐: