地铁站 x(千米) y1(分钟) A 8 18 B 9 20 C 10 22 D 11.5 25 E 13 28 (1)求y1关于x的函数表达式;
(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 【考点】HE:二次函数的应用.
菁优网版权所有【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;
(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.
【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:
,
解得:
,
故y1关于x的函数表达式为:y1=2x+2;
(2)设李华从文化宫回到家所需的时间为y,则 y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,
∴当x=9时,y有最小值,ymin==39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
27.(10分)(2017?成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是
=
=
;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD. ①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF. ①证明△CEF是等边三角形; ②若AE=5,CE=2,求BF的长.
【考点】KY:三角形综合题;KD:全等三角形的判定与性质.
菁优网版权所有【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
②结论:CD=DH=AD?cos30°=CD=DE+EC=2DH+BD=
AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,
AD,由AD=AE,AH⊥DE,推出DH=HE,由AD+BD,即可解决问题;
拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得
=cos30°,由此即可解决问题.
【解答】迁移应用:①证明:如图②
∵∠BAC=∠DAE=120°, ∴∠DAB=∠CAE, 在△DAE和△EAC中,
,
∴△DAB≌△EAC,
②解:结论:CD=AD+BD.
理由:如图2﹣1中,作AH⊥CD于H.
∵△DAB≌△EAC, ∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=∵AD=AE,AH⊥DE, ∴DH=HE,
∵CD=DE+EC=2DH+BD=
AD,
AD+BD.
拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
∵四边形ABCD是菱形,∠ABC=120°, ∴△ABD,△BDC是等边三角形, ∴BA=BD=BC,
∵E、C关于BM对称, ∴BC=BE=BD=BA,FE=FC, ∴A、D、E、C四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,
∴△EFC是等边三角形,
②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5, 在Rt△BHF中,∵∠BFH=30°, ∴
=cos30°,
=3
.
∴BF=
【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.
28.(10分)(2017?成都)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c
相关推荐: