第一范文网 - 专业文章范例文档资料分享平台

00-05全国联赛一试解析几何试题汇编

来源:用户分享 时间:2025/9/10 12:35:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

全国高中数学联合竞赛

解析几何试题分类汇编(00 ~ 05)

一、选择题

1.(00,3)已知点A为双曲线x2?y2?1的左顶点,点B和点C在双曲线的右支上,?ABC是等边三角形,则?ABC的面积是

(A)

33 (B)

332 (C)33 (D)63

53x?452.(00,5)平面上整点(纵、横坐标都是整数的点)到直线y?(A)

34170的距离中的最小值是

(B)

3485 (C)

2

1202

(D)

2

130

3.(02,2)若实数x, y满足(x + 5)+(y – 12)=14,则x2+y2的最小值为 (A) 2 (B) 1 (C) 4.(02,4)直线

x4?y3?1椭圆

3 (D) 2

x216?y29?1相交于A,B两点,该圆上点P,使得⊿PAB面积等

于3,这样的点P共有

(A) 1个 (B) 2个 (C) 3个 (D) 4个

22

5.(03,2)设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx+ay=ab的图形是

y x y y y x x x

A B C D 6.(03,3)过抛物线y2=8(x+2)的焦点F作倾斜角为60o的直线,若此直线与抛物线交于A、B两点,弦AB的中垂线与x轴交于P点,则线段PF的长等于

A.

163

xB.

283 ?ycos2C.

1633 D.83

7.(05,5)方程

sin2?sinA. 焦点在x轴上的椭圆 C. 焦点在y轴上的椭圆

32?cos3B. 焦点在x轴上的双曲线 D. 焦点在y轴上的双曲线

?1表示的曲线是

二、填空题

8.(00,10)在椭圆

xa22?yb22?1(a?b?0)中,记左焦点为F,右顶点为A,短轴上方的端点为

B。若该椭圆的离心率是

5?12,则?ABF= 。

1

9.(01,7)椭圆??12?cos?的短轴长等于 。

x210.(03,8)设F1,F2是椭圆

9?y24?1的两个焦点,P是椭圆上的点,且|PF1| : |PF2|=2 : 1,

则三角形?PF1F2的面积等于______________.

11.(04,12)在平面直角坐标系XOY中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当?MPN取最大值时,点P的横坐标为___________________。

12.(05,11)若正方形ABCD的一条边在直线y?2x?17上,另外两个顶点在抛物线y?x2上.则该正方形面积的最小值为 .

三、解答题

13. (00,15)已知C0:x2?y2?1和C1:

xa22?yb22?1(a?b?0)。试问:当且仅当a,b满

足什么条件时,对C1任意一点P,均存在以P为顶点、与C0外切、与C1内接的平行四边形?并证明你的结论。

14. (01,14) 设曲线C1:

xa22?y2?1(a为正常数)与C2:y=2(x+m)在x轴上方公有一个公共点P。

2

(1)实数m的取值范围(用a表示);

(2)O为原点,若C1与x轴的负半轴交于点A,当0

12时,试求⊿OAP的面积的最大值(用

a表示)。

15. (02,13)已知点A(0,2)和抛物线y2?x?4上两点B,C使得AB?BC,求点C的纵坐标的取值范围.

16. (03,15)一张纸上画有半径为R的圆O和圆内一定点A,且OA=a. 拆叠纸片,使圆周上某一点A/ 刚好与A点重合,这样的每一种拆法,都留下一条直线折痕,当A/取遍圆周上所有点时,求所有折痕所在直线上点的集合.

17.(04,14)在平面直角坐标系xoy中,给定三点A(0,),B(?1,0),C(1,0),点P到直线BC的

34距离是该点到直线AB,AC距离的等比中项。 (Ⅰ)求点P的轨迹方程;

(Ⅱ)若直线L经过?ABC的内心(设为D),且与P点的轨迹恰好有3个公共点,求L的斜率k的取值范围。

218.过抛物线y?x上的一点A(1,1)作抛物线的切线,分别交x轴于D,交y轴于B.点C在抛物线上,点E在线段AC上,满足

AEEC??1;点F在线段BC上,满足

BFFC??2,且?1??2?1,

线段CD与EF交于点P.当点C在抛物线上移动时,求点P的轨迹方程.

2

全国高中数学联合竞赛

解析几何试题分类汇编(00 ~ 05)

1.C 2.B 3.B 4.B 5.B 6.A 7.C 8.90o 9.

233

10.设椭圆的长轴、短轴的长及焦矩分别为2a、2b、2c,则由其方程知a=3,b=2,c=5,故,|PF1|+|PF2|=2a=6,又已知[PF1|:|PF2|=2:1,故可得|PFl|=4,|PF2|=2.在△PFlF2中,三边之

222

长分别为2,4,25,而2+4=(25),可见△PFlF2是直角三角形,且两直角边的长为2和4,

故△PFlF2的面积=4.

11. 解:经过M、N两点的圆的圆心在线段MN的垂直平分线y=3-x上,设圆心为 S(a,3-a),则圆S的方程为:(x?a)2?(y?3?a)2?2(1?a2)

对于定长的弦在优弧上所对的圆周角会随着圆的半径减小而角度增大,所以,当?MPN取最大值时,经过M,N,P三点的圆S必与X轴相切于点P,即圆S的方程中的a值必须满足

2(1?a)?(a?3),解得 a=1或a=-7。

22

即对应的切点分别为P(1,0)和P'(?7,0),而过点M,N,p'的圆的半径大于过点M,N,P

的圆的半径,所以?MPN??MP'N,故点P(1,0)为所求,所以点P的横坐标为1。 12.解:设正方形的边AB在直线y?2x?17上,而位于抛物线上的两个顶点坐标为C(x1,y1)、D(x2,y2),则CD所在直线l的方程y?2x?b,将直线l的方程与抛物线方程联立,得x?2x?b?x1,2?1?2b?1.

2222令正方形边长为a,则a?(x1?x2)?(y1?y2)?5(x1?x2)?20(b?1).① 在y?2x?17上任取一点(6,,5),它到直线y?2x?b的距离为a,?a?|17?b|5②.

①、②联立解得b1?3,b2?63.?a?80,或a?1280.?amin?80.

13.利用极坐标解决:以坐标原点为极点,x轴为极轴建立极坐标系,则椭圆的极坐标方程为1?cos?a22222?2?sin?b22------(1)

显知此平行四边形ABCD必为菱形,设A(?1,?),则B(?2,90???)

3

代入(1)式相加:

1?12?1?22?1a2?1b2

由于该菱形必与单位圆相切,故原点到AB的距离为1, ∴?1?1?1??1??2,从而

221?12?1?22?1,∴

1a2?1b2?1

?x22?2?y?114. 解:(1)由?a 消去y得:x2?2a2x?2a2m?a2?0 ①

?2?y?2(x?m) 设f(x)?x2?2a2x?2a2m?a2,问题(1)化为方程①在x∈(-a,a)上有唯一解或等根. 只需讨论以下三种情况: 1°△=0得:m?a2?12,此时xp=-a2,当且仅当-a<-a2<a,即0<a<1时适合;

2°f (a)f (-a)<0,当且仅当-a<m<a;

3°f (-a)=0得m=a,此时xp=a-2a2,当且仅当-a<a-2a2<a,即0<a<1时适合. f (a)=0得m=-a,此时xp=-a-2a2,由于-a-2a2<-a,从而m≠-a. 综上可知,当0<a<1时,m?a2?12或-a<m≤a;

当a≥1时,-a<m<a.……………………………………………… 10分 (2)△OAP的面积S? ∵0<a<

1212ayp

22,故-a<m≤a时,0<?a?aa?1?2m<a,

由唯一性得 xp??a2?aa2?1?2m

xpa22 显然当m=a时,xp取值最小.由于xp>0,从而yp=1?2∴S?aa?a.

取值最大,此时yp?2a?a2,

当m?a2?1222

时,xp=-a,yp=1?a,此时S?12a1?a2.

2 下面比较aa?a与

12a1?a22的大小:

13 令aa?a2?12a1?a,得a?

4

搜索更多关于: 00-05全国联赛一试解析几何试题汇编 的文档
00-05全国联赛一试解析几何试题汇编.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c08nbq7hdvh6c4rp7potx_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top