第八讲 不定积分的分部积分法
一、单项选择题(每小题4分,共24分) 1.设e?x是f?x?的一个原函数,则
?xf?x?dx?( )
A. e?x?x?1??c B.
?e?x?x?1??c
C.e?x?1?x??c D.
e?x?x?1??c
解:?F?x??e?x,f?x??F??x???e?x
?原式=?xdF?x? ?xF?x???F?x?dx
?xe?x??e?xdx??x?1?e?x?c
选A
2.若f?x?的一个原函数为ln2x,则
?xf??x?dx?( )
A.lnx?ln2x?c B.2lnx?ln2x?cC.2lnx?ln2x?c D.lnx?ln2x?c 解: F?x??ln2x,
f?x??F??x??2xlnx
?xf??x?dx??xdf?x?
?xf?x???f?x?dx
?2lnx?ln2x?c
选C
3.设f??lnx???1?x?lnx,则 f?x?=( )
1
A.xex?x22?c B.?x?1?ex?x22?c
C.xex?x2.?x?1?ex?x22?c D2?c
解:(1)?f??lnx???1?elnx?lnx
?f??x???1?ex?x
(2)f?x???x?1?ex?dx
?x2xx2xx2??xde?2?xe?e?c
选B
4.?xf???x?dx= ( ) A. xf??x???f?x?dx
B. xf?x??f?x??c C. xf??x??f?x??c D.f?x??xf??x??c 解: 原式=?xdf??x?
?xf??x???f??x?dx
?xf??x???df?x?
?xf??x??f?x??c 选C
5.
?xcos2xdx? ( )
A. xtanx?lncosx?c B. xtanx?lncosx?c C. xtanx?lnsinx?c D. xtanx?lnsinx?c 解: 原式=?xdtanx
2
?xtanx??sinxcosxdx =xtanx??dcosxcosx
=xtanx?lncosx?c 选B 6.?1x2? ( )
1?x2?dx? A. 1x?arctanx?c B.
1x?arctanx?c C. ?1x?arctanx?c
D.?1x?arctanx?c
2解: 原式??x?1?x2x2?1?x2?dx
??1x2dx??11?x2dx
??1x?arctanx?c
选C
二、填空题(每小题4分,共24分)7.?lnxdx= 解: 原式?xlnx??xdlnx
?xlnx??x?1xdx ?xlnx?x?c
8.?exdx?
解: 原式x?t?et?2tdt
?2?tdet?2tet?2et?c
回代2xex?2ex?c
3
9.?1?x?1??x?2?dx= 解: 原式
拆项??x?2???x?1??x?1??x?2?dx
??1dxx?1dx??x?2
?lnx?1?lnx?2?c
?lnx?1x?2?c
10.
若f??ex??1?x?x?0?,则
f?x?= 解:(1)?f??ex??1?lnex ?f??x??1?lnx
(2)f?x??x??xlnx?x??c?xlnx?c 11.?xsin2xdx? 解: 原式=∫xd??cotx?
??xcotx?∫
cosxsinxdx
??xcotx?lnsinx?c
12.?xf?x2?f??x2?dx? 解: 原式=1??x22f2??f??x2?dx
凑微分12?f?x2?df?x2??1?2?24?f?x???c三、计算题(每小题8分,共64分) 13.?lnsinxcos2xdx
.解:原式=?lnsinxdtanx =tanx?ln?sinx???tanx?cosxsinxdx
=tanx?ln?sinx???dx
4
=tanx?ln?sinx??x?c
1?x214.??11?x2arctanxdx
解:原式=?x21?x2arctanxdx
=xarctan??x1?x2dx??arctanxdarctanx
=xarctanx?12ln?1?x2??12?arctanx?2?c
15.?xcosxsinxdx 解:原式=?x?12sin2xdx
=?14?xdcos2x
=?1?4?xcos2x??cos2xdx?? =
?114xcos2x?8sin2x?e
16.?x3e?x2dx
x2e?x2dx2.解:原式=?2
x2?t?te?tdt?11t2??2?tde?
??1?te?t?e?t2??dt??
??1?t?t2??te?e???c 回代?1??x2?1?e?x2?2???c
17.?x2cosxdx 解: 原式??x2dsinx
?x2sinx??sinxdx2
?x2sinx?2?xsinxdx
5
相关推荐: