23.(本小题满分7分)
某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(2≈1.4,3≈1.7)
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.
第23题图
24.(本小题满分9分)
如图,AB为⊙O的直径,劣弧BC?BE,BD∥CE,连接AE并延长交BD于D. 求证:(1)BD是⊙O的切线;
·AD. (2)AB?AC
2第24题图
25.(本小题满分10分)
在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.
(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?
(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.
26.(本小题满分11分)
如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA?15,OC?9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.
(1)求N点、M点的坐标;
(2)将抛物线y?x2?36向右平移a(0?a?10)个单位后,得到抛物线l,l经过N点,求抛物线l的解析式;
(3)①抛物线l的对称轴上存在点P,使得P点到M,N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.
第26题图
20XX年鄂尔多斯市初中毕业升学考试
数学试题参考答案及评分说明
(一)阅卷评分说明
1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致.
2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.
3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).
4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.
5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.
6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准
一、选择题(本大题10个小题,每小题3分,共30分)
1 2 3 4 5 6 7 8 9 10 题 号 选项 C B D D B D A C 15.4n?1
B D 二、填空题(本大题8个小题,每小题3分,共24分)
11.x≥2 12.a?5 13.28 14.8,8.2 16.m??6且m??4
17.18(18°)
18.3
三、解答题(本大题8个小题,共66分) 19.(本小题满分8分)
?1?(1)计算:?2?3?27????(π?2)0
?3?2?1解:原式=?4?3?3 ················································································· 3分(一处正确给1分) ??10. ········································································································································· 4分
a2?b2?2ab?b2?(2)先化简:再求值:2??a??,其中a?2?1,b?1.
a?ab?a?(a?b)(a?b)(a?b)2解:原式= ························································ 2分(一处正确给1分) ?a(a?b)a=
1 ············································································································································· 3分 a?b?12 ························································································································ 4分 ?2?1?12 20.(本小题满分7分)
景点 成陵 响沙湾 恩格贝 七星湖 巴图湾
解:(1)84?21%?400(人).答:共调查了400人. ······················································ 2分 400?25%?100(人),补充图表如下 ································································· 4分(各1分) (2)360°?21%?75.6°.答:“恩格贝”所对的圆心角是75.6°. ··································· 6分 (3)2500?29%?725(人).答:首选去成陵的人数约725人. ···································· 7分 21.(本小题满分6分) 解:(1)树状图:
···························································· 3分
P(组成三角形)?42·············································································································· 5分 ?. ·
63频数 116 100 84 63 37 频率 29% 25% 21% 15.75% 9.25% 1(2)P(组成直角三角形)?. ···································································································· 6分
622.(本小题满分8分) (1)证法一: 如图(1),延长AD交FE的延长线于N,
?NDE??FCE?90°,图(1) ?△NDE≌△FCE. ················································································································· 3分 ?DN?CF. ······························································································································· 4分 AB∥FN,AN∥BF,?四边形ABFN是平行四边形. ··············································· 5分 ?BF?AD?DN?AD?FC. ······························································································· 6分
??1??BEF.?1??2,??2??BEF. (2)解:AB∥EF,?EF?BF.································································································································ 7分
?DEN??FEC,DE?EC,
相关推荐: