第一范文网 - 专业文章范例文档资料分享平台

(完整版)相似三角形性质与判定专项练习30题(有答案)

来源:用户分享 时间:2025/8/25 11:23:19 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC, (1)求证:

(2)求∠EDF的度数.

27.如图,△ABC是等边三角形,且AB∥CE. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD, ①求E到BC的距离EH的长. ②求BE的长.

28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F. (1)若AC=3,AB=4,求

(2)证明:△ACE∽△FBE;

(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.

第 9 页 共 27 页

29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB?CE.

30.如图,在Rt△ABC中,∠C=90°,且AC=CD=

,又E,D为CB的三等分点.

(1)证明:△ADE∽△BDA; (2)证明:∠ADC=∠AEC+∠B;

(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.

第 10 页 共 27 页

相似三角形性质和判定专项练习30题参考答案:

1.解:(1)∵∠ADC=∠B+∠BAD, 且∠CDG=∠BAD, ∴∠ADG=∠B; ∵∠BAC=∠DAG, ∴△ABC∽△ADG, ∴

=

(2)∵∠BAC=∠DAG, ∴∠BAD=∠CAG; 又∵∠CDG=∠BAD, ∴∠CDG=∠CAG,

∴A、D、C、G四点共圆, ∴∠DAG+∠DCG=180°; ∵GC⊥BC, ∴∠DCG=90°,

∴∠DAG=90°,∠BAC=∠DAG=90°.

2.解:(1)如图,∵∠ACB=90°,CF⊥AD, ∴∠ACD=∠AFC,而∠CAD=∠FAC, ∴△ACD∽△AFC, ∴

∴AC2=AF?AD.

(2)如图,∵CE⊥AB,CF⊥AD, ∴∠AEC=∠AFC=90°, ∴A、E、F、C四点共圆,

∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B, ∴∠ACE=∠B,∠AFE=∠B; ∵∠FAE=∠BAD, ∴△AEF∽△ADB, ∴AE:AD=BD:EF, ∴AE?DB=AD?EF.

3.解:(1)∵PB=PC, ∴∠B=∠PCB; ∵PC平分∠ACB,

第 11 页 共 27 页

∴∠ACP=∠PCB,∠B=∠ACP, ∵∠A=∠A,

∴△APC∽△ACB.

(2)∵△APC∽△ACB, ∴

∵AP=2,PC=6,AB=8, ∴AC=4.

∵AP+AC=PC=6,

这与三角形的任意两边之和大于第三边相矛盾, ∴该题无解.

4.(1)证明:∵AD∥BC, ∴∠C+∠ADE=180°, ∵∠BFE=∠C, ∴∠AFB=∠EDA, ∵AB∥DC,

∴∠BAE=∠AED, ∴△ABF∽△EAD;

(2)解:∵AB∥CD,BE⊥CD, ∴∠ABE=90°,

∵AB=4,∠BAE=30°, ∴AE=2BE,

由勾股定理可求得AE=

5.证明:∵∠ABC=2∠C,BD平分∠ABC, ∴∠ABD=∠DBC=∠C, ∴BD=CD,

在△ABD和△ACB中,,

∴△ABD∽△ACB, ∴

=

即AB?BC=AC?BD, ∴AB?BC=AC?CD. 6.证明:∵AC=BC, ∴∠A=∠B, ∵∠ACB=90°, ∴∠A=∠B=45°, ∵∠ECF=45°,

∴∠ECF=∠B=45°,

∴∠ECF+∠1=∠B+∠1,

第 12 页 共 27 页

(完整版)相似三角形性质与判定专项练习30题(有答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c09jjb1kavl7z7sh75m1a072ie1yhw200n0f_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top