第一范文网 - 专业文章范例文档资料分享平台

2015江苏各市中考数学压轴题汇编

来源:用户分享 时间:2025/5/28 18:58:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

16. (2015年江苏扬州12分)如图,直线l⊥线段AB于点B,点C在AB上,且AC:CB?2:1,点M是直线l上的动点,作点B关于直线CM的对称点B',直线AB'与直线CM相交于点P,连接PB. (1)如图1,若点P与点M重合,则?PAB= ▲ °,线段PA与PB的比值为 ▲ ; (2)如图2,若点P与点M不重合,设过P、B、C三点的圆与直线AP相交于D,连接CD. 求证:①CD?CB';②PA?2PB;

(3)如图3,AC?2, BC?1,则满足条件PA?2PB的点都在一个确定的圆上,在以下两小题中选做一题: ①如果你能发现这个确定圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;

②如果你不能发现这个确定圆的圆心和半径,那么请取几个特殊位置的P点,如点P在直线AB上、点P与点M重合等进行探究,求这个圆的半径.

17. (2015年江苏常州10分)如图,一次函数y??x?4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合. (1)写出点A的坐标;

(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.

(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.

11?S1S2

18. (2015年江苏常州10分)如图,反比例函数y?

k1的图象与一次函数y?x的图象交于点A、B,点Bx4的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方. (1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;

(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;

(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.

19. (2015年江苏淮安12分) 阅读理解:

如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=900,那么我们把这样的四边形叫做“完美筝形”.

将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示的形状,再展开得到图③,其中CE、CF为折痕,∠BCD=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′、FD′相交于点O.

简单应用:

(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ▲ ; (2)当图③中的?BCD?120?时,∠AEB′= ▲ °;

(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有 ▲ 个(包含四边形ABCD).

拓展提升:

当图中的?BCD?90?时,连接AB′,请探求∠AB′E的度数,并说明理由.

20. (2015年江苏淮安12分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8. 动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动. 过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒. (1)当t= ▲ 秒时,动点M、N相遇;

(2)设△PMN的面积为S,求S与t之间的函数关系式;

(3)取线段PM的中点K,连接KA、KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.

搜索更多关于: 2015江苏各市中考数学压轴题汇编 的文档
2015江苏各市中考数学压轴题汇编.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c09q993djgi2i4cx3q5al1oirv327pb00pl0_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top