1145S3333n?2(1?n?1)3nn?1?5?5?252???5n?1?5n?1?3?51?1?5n5 ?7?5n?12n?77?5n4?5n ?S?12n?7n?16?5n?1.22. 解析:(1)∵Sn+1=4an+2 ①∴Sn+2=4an+1+2 ②
②-①得Sn+2-Sn+1=4an+1-4an(n=1,2,…)即an+2=4an+1-4an,
变形,得an+2-2an+1=2(an+1-2an)∵bn=an+1-2an(n=1,2,…)∴bn+1=2bn. 由此可知,数列{bn}是公比为2的等比数列;
由S=a,得a-
21+a2=4a1+2,又a1=12=5故b1=a2-2a1=3∴bn=3·2n1.
(2)?cn?an2n(n?1,2,?),?cn?1?cn?an?12n?1?an2n?an?1?2an2n?1?bn2n?1, 将b-n=3·2n
1
代入,得c3n+1-cn=
4(n=1,2,…) 由此可知,数列{c3n}是公差为
4的等差数列,它的首项ca11=12?2, 故c?12?34(n?1)?31n4n?4.
(3)?c311-
n?4n?4?4(3n?1)∴an=2n·cn=(3n-1)·2n2(n=1,2,…);
当n≥2时,S-
n=4an-1+2=(3n-4)·2n1+2,由于S1=a1=1也适合于此公式,
所以所求{an项和公式是:S-
n}的前n=(3n-4)·2n1+2.
5
相关推荐: