第一范文网 - 专业文章范例文档资料分享平台

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

来源:用户分享 时间:2025/6/4 20:27:58 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

初中数学竞赛辅导 含答案

18、关于x的方程kx2?(k?1)x?1?0有有理根,求整数是的值。 (山东省竞赛题)

19、考虑方程(x2?10x?a)2?b①

(1)若a=24,求一个实数b,使得恰有3个不同的实数x满足①式。

(2)若a≥25,是否存在实数b,使得恰有3个不同的实数x满足①式?说明你的结论。 (国家理科实验班招生试题)

20、如图,已知边长为a的正方形ABCD内接于边长为b的正方形EFGH,试求

b的取值范围。 a 16

初中数学竞赛辅导 含答案

参考答案

17

初中数学竞赛辅导 含答案

18

初中数学竞赛辅导 含答案

第三讲 充满活力的韦达定理

一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;

利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】

【例1】 已知?、?是方程x2?x?1?0的两个实数根,则代数式?2??(?2?2)的值为 。 思路点拨:所求代数式为?、?的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a、b都是质数,且a2?13a?m?0,b2?13b?m?0,那么 A、

123125125123 B、或2 C、 D、或2 22222222ba

?的值为( ) ab

思路点拨:可将两个等式相减,得到a、b的关系,由于两个等式结构相同,可视a、b为方程

x2?13x?m?0的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于x1、x2的对称式,这类问题可通过变形用x1+x2、

x1x2表示求解,而非对称式的求值常用到以下技巧:

(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

m2【例3】 已知关于x的方程:x?(m?2)x??0

42 (1)求证:无论m取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根x1、x2满足x2?x1?2,求m的值及相应的x1、x2。

19

初中数学竞赛辅导 含答案

思路点拨:对于(2),先判定x1、x2的符号特征,并从分类讨论入手。

【例4】 设x1、x2是方程2x2?4mx?2m2?3m?2?0的两个实数根,当m为何值时,x12?x22有最小值?并求出这个最小值。

思路点拨:利用根与系数关系把待求式用m的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的。

注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性。 【例5】 已知:四边形ABCD中,AB∥CD,且AB、CD的长是关于x的方程

17x2?2mx?(m?)2??0的两个根。

24(1)当m=2和m>2时,四边形ABCD分别是哪种四边形?并说明理由。

(2)若M、N分别是AD、BC的中点,线段MN分别交AC、BD于点P,Q,PQ=1,且AB

思路点拨:对于(2),易建立含AC、BD及m的关系式,要求出m值,还需运用与中点相关知识找寻CD、AB的另一隐含关系式。

注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.

20

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c09y2q2e2b577xpo5846y5ap1c1kzfj00qcq_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top