九年级数学上册知识点归纳(北师大版)
第一章 特殊平行四边形 第二章 一元二次方程 第三章 概率的进一步认识 第四章 图形的相似 第五章 投影与视图 第六章 反比例函数
(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的.....两顶点连成的线段叫做它的对角线。 ...
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个
距离称为平行线之间的距离。
第一章 特殊平行四边形
- 1 -
1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一
组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。
2矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ..
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条
对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。 3正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。 ※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。
平行四边形 一个内角为直角 一组邻边相等 菱(或对角线相等) - 2 - 一组邻边相等且一个内角为直角 (或对角线互相垂直平分) 正方形
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。 ※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半
第二章 一元二次方程
1认识一元二次方程
※只含有一个未知数的整式方程,且都可以化为ax?bx?c?0(a、b、c为
- 3 -
2
相关推荐: