第一范文网 - 专业文章范例文档资料分享平台

数学必修4人教版导学案2.2.1向量的加法运算及其几何意义(教学案)

来源:用户分享 时间:2025/6/3 14:28:38 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2. 2.1 向量的加法运算及其几何意义

教学目标:

1、掌握向量的加法运算,并理解其几何意义;

2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;

教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义.

学 法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.

教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学过程: 一、设置情景:

1、 复习:向量的定义以及有关概念

强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置:

(1)某人从A到B,再从B按原方向到C, 则两次的位移和:AB?BC?AC

(2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和:AB?BC?AC (3)某车从A到B,再从B改变方向到C, 则两次的位移和:AB?BC?AC

A B

C

(4)船速为AB,水速为BC,则两速度和:AB?BC?AC

二、探索研究:

1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)

如图,已知向量a、b.在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即 a+b?AB?BC?AC,规定: a + 0-= 0 + a

A B

C

C A B A B C

探究:(1)两相向量的和仍是一个向量;

b A a

aa b B

a C b a+b

a b a+b (2)当向量a与b不共线时,a+b的方向不同向,且|a+b|<|a|+|b|; (3)当a与b同向时,则a+b、a、b同向,|a+b|=|a|+|b|,当a与b反向时,若

b a O b a a A b

|a|>|b|,则|a|<|b|,则

a+b的方向与a相同,且|a+b|=|a|-|b|;若a+b的方向与b相同,且|a+b|=|b|-|a|.

(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加 3.例一、已知向量a、b,求作向量a+b

作法:在平面内取一点,作OA?a AB?b,则OB?a?b. 4.加法的交换律和平行四边形法则

问题:上题中b+a的结果与a+b是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)

2)向量加法的交换律:a+b=b+a 5.向量加法的结合律:(a+b) +c=a+ (b+c) 证:如图:使AB?a, BC?b, CD?c

则(a+b) +c=AC?CD?AD,a+ (b+c) =AB?BD?AD ∴(a+b) +c=a+ (b+c)

从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行. 三、应用举例:

例二(P94—95)略 练习:P95 四、小结

1、向量加法的几何意义; 2、交换律和结合律;

3、注意:|a+b| ≤ |a| + |b|,当且仅当方向相同时取等号. 五、课后作业:

P103第2、3题 六、板书设计(略)

2.2.1 向量的加法运算及其几何意义

课前预习学案

预习目标:

通过复习提问回顾向量定义及有关概念;利用问题情景提出向量加法运算、给出实际背景。 预习内容:

1、 复习:提问向量的定义以及有关概念。

强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、情景设置:

(1)某人从A到B,再从B按原方向到C, 则两次的位移和: 。 (2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和: 。 (3)某车从A到B,再从B改变方向到C, 则两次的位移和: 。 (4)船速为AB,水速为BC,则两速度和: 。

3、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

疑惑点

课内探究学案

学习目标

1、掌握向量的加法运算,并理解其几何意义;

2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 学习过程:

1、向量的加法: 叫做向量的加法.

疑惑内容 A B A B

C

C A B C

A B C

数学必修4人教版导学案2.2.1向量的加法运算及其几何意义(教学案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0bnt11a9st7l7tx29ybm0wacw0f2i000g9g_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top