最初中数学路径最短问题专题复习
一、具体内容包括:
蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理:
两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化)
B A 主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)
三、例题:
例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是 。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是 。 D
C
A B
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
B 李庄
A 张村 L
②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。请在图中找出点P的位置,并计算PA+PB的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为 。
李庄
张村
四、练习题(巩固提高)
(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是 。 D B
B
C
A B A A A
第1题 第2题 第3题
2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为 。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食物,知圆柱体的高为5 cm,底面圆的周长为24cm,则蚂蚁爬行的最短路径为 。
4、正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为 。
D AEPC
B 第4题 第图5(2)题 第6题 5、在菱形ABCD中,AB=2, ∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为 。
6、如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值为____ ___。
(二)8、如图,点P关于OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若CD=18cm,则△PMN的周长为________。
9、已知,如图DE是△ABC的边AB的垂直平分线,D为垂足,DE交BC于E,且AC=5,BC=8,则△AEC的周长为__________。
10、已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8,△ABE的周长为14,则AB的长 。
11、如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 12、在平面直角坐标系中,有A(3,-2),B(4,2)两点,现另取一点C(1,n),当n = 时,AC + BC的值最小.
DCPFA
EB
第11题 第14题 第15题 13、△ABC中,∠C = 90°,AB = 10,AC=6,BC=8,过AB边上一点P作PE⊥AC于E,PF⊥
BC于 F,E、F是垂足,则EF的最小值等于 .
14、如图,菱形ABCD中,AB=2, ∠BAD=60°,点E、F、P分别是AB、BC、AC上的动点,则PE+PF的最小值为___________.
15、如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
(三)16、如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。
17、如图,直线l是第一、三象限的角平分线. 实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′ 、C′ ; 归纳与发现:
(2)结合以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为 ; 运用与拓广:
(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标. 18、几何模型:
条件:如图,A、B是直线L同旁的两个定点.问题:在直线L上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A?,连结A?B交l于点P,则PA?PB?A?B的值最小(不必证明). 模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB?PE的最小值是___________;
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA?OB,?AOC?60°,P是OB上一动点,求PA?PC的最小值; (3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
B
B B A
R A P E C
l
A B C 图2 O P P B O Q A
图1
图3 A?D
19、问题探究
(1)如图①,四边形ABCD是正方形, AB?10cm,E为边BC的中点,P为BD上的一个动点,求PC?PE的最小值;
(2)如图②,若四边形ABCD是菱形, AB?10cm,?ABC?45°,E为边BC上的一个动点,P为BD上的一个动点,求PC?PE的最小值;
问题解决(3)如图③,若四边形ABCD是矩形, AB?10cm,BC?20cm,E为边BC上的一个动点,P为BD上的一个动点,求PC?PE的最小值;
A D
A D P B
E
C
A B C
D B
C
相关推荐: