江苏省苏州市2019-2020学年中考数学三模考试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.63 B.62 C.33 D.32
2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
3.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5) 4.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( ) A.4
B.6
C.16π
D.8
5.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B.
2 3C.2 2D.5 26.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是( ) A.7
B.8
C.9
D.10
7.下列运算正确的是( ) A.a4+a2=a4
C.(m﹣n)2=m2﹣n2
B.(x2y)3=x6y3 D.b6÷b2=b3
8.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向
左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
9.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米. A.25×10﹣7 B.2.5×10﹣6 C.0.25×10﹣5 D.2.5×10﹣5 10.下列运算中,正确的是( ) A.(a3)2=a5 C.a3(﹣a)2=﹣a5
B.x=﹣x (﹣x)2÷D.(﹣2x2)3=﹣8x6
11.如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A. B. C. D.
12.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( ) A.8
B.9
C.10
D.12
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为 cm.
14.分解因式:x2﹣1=____.
15.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若
AOC=80°,则
ADB的度数为( )
A.40° B.50° C.60° D.20°
16.AB=BC,∠ABC=110°AB的垂直平分线DE交AC于点D,如图,在△ABC中,,连接BD,则∠ABD= ___________°.
17.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
18.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:
请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.
20.(6分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐
标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
21.(6分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF, (1)求证:△ABE≌△DCF;
(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.
22.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为 抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.(1)求k,a,b的值;
(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.
23.(8分)如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O; ③过C作CE∥AB交MN于点E,连接AE、CD. (1)求证:四边形ADCE是菱形;
相关推荐: