2012高考数学第一轮总复习100讲
g3.1028数列的综合应用
一、知识回顾
1. 数列的概念,等差、等比数列的基本概念; 2. 等差、等比数列的通项、前n项和公式; 3. 等差、等比数列的重要性质; 4. 与数列知识相关的应用题;
5. 数列与函数等相联系的综合问题。
二、基本训练
?an?2, n是奇1. 数列{an}中,a1?2,an?1?? ,则a5? 。
2a, n是偶?n2. 等差数列{an}中,a1?2,公差不为零,且a1,a3,a11恰为某等比数列的前3项,那么该等比数列的公比等于 。
23. Sn是等差数列{an}的前n项和,an?0,若am?1?am?am?1?0,S2m?1?38,则m
= 。
4. 设{an}是等比数列,{bn}是等差数列,且b1?0,数列{cn}的前三项依次是1,1,2,且
cn?an?bn,则数列{cn}的前10项和为 。
5. 如果函数f(x)满足:对于任意的实数a、b,都有f(a?b)?f(a)f(b),且f(1)?2,则 f(2)f(5)f(9)f(14)f(1274)??????? 。 f(1)f(3)f(6)f(10)f(1225)
三、例题分析
例1设无穷等差数列{an}的前n项和为Sn.
3
(1)若首项a1? ,公差d?1,求满足S2?(Sk)2的正整数k;
2k(2)求所有的无穷等差数列{an},使得对于一切正整数k都有S
例2 如图,64个正数排成8行8列方阵.符号aij(1?i?8,1?j?8,i、j?N*)表示位于第i
k2?(Sk)2成立.
2012高考数学第一轮总复习100讲
行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11?11,a24?1,a32?, 24(1)求{aij}的通项公式;
(2)记第k行各项和为Ak,求A1的值及数列
a11 a12 a13 ? a18a21 a22 a23 ? a28? ? ? ?a81 a82 a83 ? a88{Ak}的通项公式;
(3)若Ak?1,求k的值。
例3 函数f(x)对任意x?R都有f(x)?f(1?x)?.
12n?1) (n?N*)的值. n12n?1(2)数列?an?满足:an=f(0)?f()?f()????f()?f(1),数列?an?是等差数
nnn(1)求f()和f()?f(121n列吗? (3)令bn?
例4. (05福建卷)已知数列{an}满足a1=a, an+1=1+不
同
的
数
列
,
如
当
a=1
时
44an?122,Tn?b12?b2?b32????bn,Sn?32?16,试比较Tn与Sn的大小. n1我们知道当a取不同的值时,得到an,
得
到
无
穷
数
列
:
35111,2,,,?;当a??时,得到有穷数列:?,?1,0.
2322(Ⅰ)求当a为何值时a4=0; (Ⅱ)设数列{bn}满足b1=-1, bn+1=
1求证a取数列{bn}中的任一个数,(n?N?),
bn?1
2012高考数学第一轮总复习100讲
都可以得到一个有穷数列{an}; (Ⅲ)若
四、作业 g3.1028
1. 等差数列?an?的前n项和为Sn,若a2?a4?a15的值为常数,则下列各数中也是常数的是( )
A.S7 B.S8 C.S13 D.S15
2. 已知等差数列{an}和等比数列{bn}各项都是正数,且a1?b1,a2n?1?b2n?1,那么,一定有( ) A.an?1?bn?13?an?2(n?4),求a的取值范围. 2数列的综合应用
B.an?1?bn?1 C.an?1?bn?1D.an?1?bn?1
1. (05广东卷)已知数列?xn?满足x2?x11,xn??xn?1?xn?2?,n?3,4,?.若22limxn?2,则 x1等于 (B)
n??(A)
3(B)3(C)4(D)5 23. 等差数列所有项的和为210,其中前4项的和为40,后4项的和为80,则项数为 。 4. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{an}是等和数列,且a1?2,公和为5,那么a18的值为______,这个数列的前n项
和Sn的计算公式为 。
5. 三个实数6,3,?1排成一行,在6和3之间插入两个实数,3和?1之间插入一个实数,使得这六个数中的前三个、后三个分别成等差数列,且插入的三个数本身依次成等比数列,那么所插入的这三个数的和可能是:①
719;②3;③;④7。其中正确的序号是 。 446. 用数字0, 1, 2, 3, 5组成没有重复数字的五位偶数,把这些偶数从小到大排列起来,得到一个数列{an},则a25? 。
7. 已知等差数列{an}的公差d?0,数列{bn}是等比数列,又a1?b1?1,a2?b2,a4?b4。
2012高考数学第一轮总复习100讲
(1)求数列{an}及{bn}的通项公式;
(2)设cn?an?bn,求数列{cn}的前n项和Sn(写成关于n的表达式)。
8. 设有数列{an},a1?5,若以a1,a2,?,an为系数的一元二次方程6an?1x2?anx?1?0(n?N*,且n?2)都有根?,?满足3?????3??1。
(1)求证:数列{an?}是等比数列; (2)求an;
(3)求{an}的前n项和Sn。
9. 已知定义在R上的函数f(x)和数列?an?满足下列条件:
12an?1)n(? a1?a,an?f(2,3,4a,...?a),,1 2 f(an)?f(an?1)?k(an?an?1)(n?2,3,4,...),
相关推荐: