┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅10分 ∴EX=0×
+100×
+200×
=
.┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅12分
【考点】相互独立事件的概率乘法公式;互斥事件的概率加法公式;离散型随机变量的期望与方差.
18.(选编,中档题)(本小题满分12分)
圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧
于点G,交弦BD于点E,F为线段BC的中点.
(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.
【解答】证明:
(Ⅰ)∵OF为△ABC的一条中位线,∴OF∥AC,又OF?平面ACD,AC?平面ACD,∴OF∥平面ACD.
又∵OG为∠DOB的平分线,∴OG⊥BD,∵AB是⊙O的直径,∴AD⊥BD,
∴OG∥AD,又OG?平面ACD,AD?平面ACD,∴OG∥平面ACD,┅┅┅┅┅┅┅┅┅┅┅┅┅3分
又∵OG,OF为平面OGF内的两条相交直线,
∴平面OGF∥平面CAD.┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅5分
(Ⅱ)∵O为AB的中点,∴CO⊥AB,∵平面CAB⊥平面DAB,平面CAB∩平面DAB=AB,OC?平面ABC,
∴CO⊥平面DAB,又Rt△DAB中,AB=2,∠DAB=60°,∴AD=1,又OG∥AD,OG=1,OA=1, ∴四边形ADGO为菱形,∠AOG=120°,设DG中点为M,则∠AOM=90°,即OM⊥OB, ∴直线OM,OB,OC两两垂直,┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅7分
以O为原点,以OM,OB,OC为坐标轴建立如图所示的空间直角坐标系O﹣xyz. 则B(0,1,0),C(0,0,1),D(∴
=(
,
,
,
,G(=(
,
,F(0,,).
=(0,﹣1,1),,﹣,0).
,
设平面BCD的法向量为=(x,y,z),则
∴,令y=1,=(,1,1).┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅
┅9分 ∴
=1,|
|=1,n =
.
∴=.┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅11分
∴直线FG与平面BCD所成角的正弦值为12分
.┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅
【考点】直线与平面所成的角;平面与平面平行的判定.空间角的计算,空间向量在立体几何中的应用.
19、(原创,中档题)(本小题满分12分)
22sn(n?2) 已知在数列?an?中,a1?1,其前n项和为sn,且an?2sn?1?1??1?(1) 证明??是等差数列,并求数列??的前n项和Pn
?sn??sn?sn2n?求数列的前项和Tn (2) 若bn?2n?1sn2112sn?2,【解答】(1)当n?2时,an?sn?sn?1?化简得sn?1?sn?snsn?1即?ss2sn?1nn?111?1 又?s1a1所以数列??1??为以1为首项,2为公差的等差数列,┅┅┅┅┅┅┅┅┅┅┅4分 ?sn?1?2n?1,则Pn=(1?2n?1)?n=n2┅┅┅┅┅┅┅┅┅┅┅┅6分 sn2(
2
)
由
(
1
)
得
1?2n?1sn所以
sn?12n?1,
sn2n1bn????(2n?1)?2n
2n?1sn(2n?1)(2n?1)111?(?)?(2n?1)?2n┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅22n?12n?1┅┅8分
所以An?11111111n(1???????????)? 2335572n?12n?12n?1Bn?1?2?3?22?5?23?????(2n?3)?2n?1?(2n?1)?2n,① 2Bn?1?22?3?23?5?24?????(2n?3)?2n?(2n?1)?2n?1,②
① ?②
2得
n?,
n?Bn?1??????????2???3?n??2?=
2(3?2n)?2n?1?6
?Tn?An?Bn?n?(2n?3)?2n?1?6┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅2n?1┅┅┅┅┅12分
【考点】数列的概念、通项公式及数列求和
20.已知函数f(x)?ax?b1?2lnx,对任意实数x?0,都有f(x)??f()成立. xx(Ⅰ)对任意实数x?1,函数f(x)?0恒成立,求实数a的取值范围;
(Ⅱ)求证:
1112n3?????2ln?,n?2,n?N?. 222n?1423n11(a?b)(x?)?0,即得a?b┅┅┅┅┅┅f(x)??f()?xx【解答】解:(Ⅰ)解:1分
112ax2?2x?af(x)?a(x?)?2lnx,f?(x)?a(1?2)┅┅┅┅┅┅2分 ??2xxxx当a?0时,因为x?1,所以f?(x)?0,f(x)在x??1,???上单调递减, 此时f(2)?f(1)?0与f(x)?0不符,(舍)┅┅┅┅┅┅┅┅┅┅┅┅┅3分 当a?0时,令g(x)?ax2?2x?a,??4-4a2
若??0即a?1时,g(x)?0,f?(x)?0,f(x)在x??1,???上单调递增.
f(x)?f(1)?0成立┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅4分
若??0即0?a?1时,设g(x)的零点为x1,x2?x1?x2?, 则x1?x2?2?0,x1x2?1. 所以有0?x1?1?x2. a则当x??1,x2?时,g(x)?0,f?(x)?0,f(x)在x??1,x2?上单调递减,
f(x)?f(1)?0与f(x)?0不符,(舍). ┅┅┅┅┅┅┅┅5分
综上:实数a的取值范围是?1,???.┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅6分
(x?)?2lnx?0恒成立. (Ⅱ)由(Ⅱ)知,当a?1时,f(x)?即x?1x1?2lnx?x?1?,┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅7分 xn2令x?2(n?1,n?N?)
n?111n2n2n2-1n2?2?2ln则有2,即2┅┅┅┅┅┅10分 -2?2ln2????n?1n?1n?1nn?1nn?11111n2-)?2?2ln所以(
?n?1??n?1?2n?1n?1n
相关推荐: