湖北省咸宁市2016年初中毕业生学业考试
数 学 试 卷
一、精心选一选 (本大题共8小题,每小题3分,共24分. 在每小题给出的四个选项中只有一项是符合题目要求的. 请在答题卷上把正确答案的代号涂黑)
1. 冰箱冷藏室的温度零上5°C,记着+5°C,保鲜室的温度零下7°C,记着( ) A. 7°C B. -7°C C. 2°C D. -12°C
【考点】正负数表示的意义及应用.
【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 【解答】解:根据题意可得:温度零上的记为+,所以温度零下的记为:﹣,
因此,保鲜室的温度零下7°C,记着-7°C.
故选B.
【点评】本题考查了正负数表示的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
2. 如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为( )
A. 50° B. 45° C. 40° D.30° A 1 D
C B (第2题)
【考点】平行线的性质,垂直的性质,三角形的内角和定理.
【分析】由直线l1∥l2,根据两直线平行,内错角相等,可得∠ABC=50°;由CD⊥AB,可知∠CDB=90°,由三角形的内角和定理,可求得∠BCD的度数. 【解答】解:∵l1∥l2,
∴∠ABC=∠1=50°;
又∵CD⊥AB,
∴∠CDB=90°;
在△BCD中,∠BCD=180°-∠CDB-∠ABC=180°-90°-50°=40° 故选C.
【点评】本题考查了平行线的性质,垂直的性质,三角形的内角和定理.解题的关键是要注意掌握两个性质一个定理的应用:①两直线平行,内错角相等; ②垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;③三角形的内角和定理:三角形三个内角的和为180°.
3. 近几年来,我市加大教育信息化投入,投资201000000元,初步完成咸宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖。将201000000用科学高数法表示为( )
78910
A. 20.1×10 B. 2.01×10 C. 2.01×10 D. 0.201×10 【考点】科学记数法.
1
【分析】确定a×10(1≤|a|<10,n为整数)中n的值是易错点,由于201000000有9位,所以可以确定n=9-1=8.
8
【解答】解:201000000= 2.01×10.
故选B.
n
【点评】本题考查了科学记数法。把一个数M记成a×10(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.
4. 下面四个几何体中,其中主视图不是中心对称图形的是( )
[来源:学§科§网Z§X§X§K]n
A B C D 【考点】简单几何体的三视图,中心对称图形.
【分析】根据从正面看得到的图形是主视图,可得到各几何体的主视图;根据中心对称图形的定义判断即可得到答案。
【解答】解:A、正方体的主视图是正方形,正方形是中心对称图形,故A不符合题意;
B、球体的主视图是圆,圆是中心对称图形,故B不符合题意;
C、圆锥的主视图是三角形,三角形不是中心对称图形, 故C符合题意; D、圆柱的主视图是矩形,矩形不是中心对称图形,故D不符合题意. 故选:C.
【点评】本题考查了简单几何体的三视图,中心对称图形.要熟练掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解决简单几何体的三视图型题的关键.中心对称图形是指:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.理解中心对称的定义要抓住以下三个要素:(1)有一个对称中心——点;(2)图形绕中心旋转180°;(3)旋转后两图形重合.
5. 下列运算正确的是( )
A.6-3=3 B.
(?3)2=-3 C. a·a= a D. (2a)=4a
22326
【考点】合并同类项,算术平方根,同底数幂的乘法,积的乘方。
【分析】根据同类项合并、平方根的定义、同底数幂的乘法、积的乘方的运算法则计算即可. 【解答】解:A. 根据同类项合并法则,6-3不是同类项,不能合并,故本选项错误;
B. 根据算术平方根的定义,
(?3)2
3
2=3,故本选项错误;
C.根据同底数幂的乘法,a·a= a,故本选项错误;
326
D. 根据积的乘方,(2a)=4a,故本选项正确. 故选D.
【点评】本题是基础题,弄清法则是解题的关键。合并同类项是把多项式中的同类项(所含字母相同,并且相同字母的指数也相同的项)合并成一项;若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。a的算术平方根记作a,读作“根号a”,a叫做被开方数;要注意算术平方根的双重非负性; 2
同底数幂是指底数相同的幂;同底数幂相乘,底数不变指数相加;积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
6. 某班七个兴趣小组人数分别为4,4,5,5,x,6,7. 已知这组数据的平均数是5,则这组数据的众数和中位数分别是( )
A.4,5 B.4,4 C.5,4 D.5,5 【考点】平均数、众数、中位数的定义和求法.
【分析】先根据平均数求出x,再根据众数是一组数据中出现次数最多的数据可得出众数;找中位数时要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:依题意,得 17(4+4+5+5+x+6+7)=5
解得 x=4.
即七个兴趣小组人数分别为4,4,5,5,4,6,7.
这组数据中出现次数最多的数据是4,故众数是4;
把数据按从小到大的顺序排列为:4,4,4,5,5, 6,7. 位于最中间的一个数是5,故中
位数为5.
故选A.
【点评】本题考查了平均数、众数、中位数的定义和求法.平均数是指在一组数据中所有数据之和再除以数据的个数;平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标;众数是一组数据中出现次数最多的数据;中位数时要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
7. 如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论: ①
DEBC=
12S△DOE1S△ODE1ADOE; ②
S△COB=2; ③AB=OB; ④S△ADE=3.
[来源:学&科&网Z&X&X&K]
其中正确的个数有( )
A. 1个 B. 2个 C.3个 D. 4个
(第7题)
【考点】三角形中位线定理,相似三角形的判定和性质.
【分析】①DE是△ABC的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定.
【解答】解:①∵DE是△ABC的中位线,
∴DE=2BC,即BC=2; 故①正确;
②∵DE是△ABC的中位线,∴DE∥BC
1DE1[来源:Z,xx,k.Com] 3
∴△DOE∽△COB
S△DOEDE11∴=(BC)=(2)=4, S△COB2
2
故②错误; ③∵DE∥BC
∴△ADE∽△ABC ∴AB=BC △DOE∽△COB ∴OB=BC ∴AB=OB,
故③正确;
④∵△ABC的中线BE与CD交于点O。 ∴点O是△ABC的重心,
根据重心性质,BO=2OE,△ABC的高=3△BOC的高, 且△ABC与△BOC同底(BC) ∴S△ABC =3S△BOC, 由②和③知,
S△ODE=4S△COB,S△ADE=4S△BOC,
11ADOEOEDEADDES△ODE1∴S=3.
△ADE故④正确.
综上,①③④正确. 故选C.
【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方.
8. 已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=45,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为( )
63105A. (0,0) B.(1,12) C.(5,5) D.(7,7)
【考点】菱形的性质,平面直角坐标系,,轴对称——最短路线问题,三角形相似,勾股定理,动点问题. 【分析】点C关于OB的对称点是点A,连接AD,交OB于点P,P即为所求的使CP+DP最短的点;连接CP,解答即可.
4
相关推荐: