角角边 两角与其中一个角的对边对应相等的两个三角形全等 AAS HL 斜边直角边 斜边与一条直角边对应相等的两个直角三角形全等 注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA
两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等。SSA 4、全等三角形的证明思路:
条 件 已经两边对应相等 找第三边 已经两角对应相等 找它们的夹边 找其中一个角的对边 已经一角一边 5、三角形具有稳定性, 三、作三角形 1、已经三边作三角形
2、已经两边与它们的夹角作三角形
3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况) 4、已经斜边与一条直角边作直角三角形
找另一个角 找另一边 SSS ASA AAS ASA或AAS SAS 下一步的思路 找它们的夹角 运用的判定方法 SAS
第六章
一、变量、自变量与因变量
生活中的变量
①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量)。
二、变量之间的表示方法: ①列表法
②关系式法:能精确地反映自变量与因变量之间数值的对应关系。
③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量。
5
第七章
一、轴对称图形与轴对称
生活中的轴对称
①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。
②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形
二、角平分线的性质:角平分线上的点到角两边的距离相等。 ∵ ∠1=∠2 PB⊥OB PA⊥OA ∴ PB=PA
三、线段垂直平分线:
①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。 ②性质:线段垂直平分线上的点到线段两个端点的距离相等。 ∵ OA=OB CD⊥AB ∴ PA=PB
四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)
①等腰三角形是轴对称图形; (一条对称轴)
②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一) ③等腰三角形的两个底角相等。 (简称:等边对等角)
五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边) 六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。
① 等边三角形的三条边相等,三个角都等于60; ②等边三角形有三条对称轴。 七、轴对称的性质:
① 关于某条直线对称的两个图形是全等形; ②对应线段、对应角相等; ② 对应点的连线被对称轴垂直且平分; ④对应线段如果相交,那么交点在对称轴上。 八、镜子改变了什么:
1、物与像关于镜面成轴对称;(分清左右对称与上下对称)
2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题
6
相关推荐: