例如,凡生物都有新陈代谢; 藻类是生物;
所以,藻类有新陈代谢。
演绎推理的前提是比结论更一般的判断,因此推出的结论并没有超出前提所判定的范围。换句话说,结论是可以由前提必然地推导出来的,所以它是一种必然性的推理。
②演绎推理的种类 演绎推理分类见下图。 ③简单命题推理
简单命题推理是指自身不包含其他命题的推理。它包括直接推理、三段论推理和关系推理。
A.直接推理
直接推理是以一个已知命题为前提,推出另一个新命题为结论的演绎推理。如:
所有的学生都是质朴的。 所以,有些质朴的是学生。 B.三段论推理
三段论推理就是借助一个共同概念把两个直接推理联结起来,从而得出结论的演绎推理。如: 所有优秀的教师都是有爱心的教师,王老师是一名优秀教师,
所以,王老师是有爱心的教师。 C.关系推理
关系推理指前提中至少有一个关系命题的推理,它是根据前提中关系命题的逻辑性质进行推演的。如:
小李比小王年龄大。 小王比小张年龄大。 所以,小李比小张年龄大。 ④复合命题推理
复合命题推理就是在前提或结论中包含复合命题,并依据复合命题的逻辑性质进行推演的推理。
例如:
如果一名教师是没有爱心的,那么他就不能成为一名合格的教师。 张老师没有爱心,所以,张老师不能成为一名合格的教师。 A.联言命题推理:是指前提或结论为联言命题,并且根据联言命题联结项的逻辑性质推出结论的演绎推理。
联言命题推理的规则:由一个联言推理为真可以推出每一个肢命题为真;各个肢命题都为真,整个联言命题也就为真。如:“化学和物理都是中学阶段的重要学科。”这个联言命题为真,推出“化学是中学阶段的重要学科”和“物理是中学阶段的重要学科”都为真。
B.选言命题推理:前提中至少有一个是选言命题,并且根据选言命题的逻辑性质推出结论的演绎推理。
选言命题推理的规则:对于相容选言命题推理,肯定一部分选言肢,不能否定或肯定其他选言肢;否定一个选言肢以外的其他选言肢,可以肯定未被否定的那个选言肢。对于不相容选言命题推理,肯定一
个选言肢,可以否定其他选言肢;否定一个选言肢以外的选言肢,可以肯定未被否定的这个选言肢。
例如:
Ⅰ.张华考试不合格,或者是因为他平时不努力,或者是因为他考试时发挥失常。现在肯定张华平时非常努力,可以推出:张华这次考试发挥失常。
Ⅱ.这次数学竞赛,要么李莉参加,要么冯杰参加。如果李莉没有参加,可以推出:冯杰参加了。
C.假言命题推理:前提中至少有一个为假言命题,并且根据假言命题的逻辑性质推出结论的演绎推理。如:
一个人只有多读书,才能明事理。 我要明事理。 所以,我要多读书。
假言命题推理的规则:对于充分条件假言命题推理,肯定前件就肯定后件,否定后件就否定前件。对于必要条件假言命题推理,否定前件就否定后件,肯定后件就肯定前件。如:
Ⅰ.“如果天下雨,那么就地湿。”肯定下雨,则肯定地湿;否定地湿,则否定下雨。 Ⅱ.“只有知己知彼,才能百战不殆。”否定知己知彼。则否定百战不殆;肯定百战不殆,就肯定知己知彼。
D.综合命题推理:本书所指就是假言选言推理,它是由两个假言命题和一个选言命题作前提,推出结论的演绎推理。如:
如果考试有这样一道题,那么赵鑫肯定得不了满分;
如果考试没有这样一道题,那么赵鑫也得不了满分; 实际上考试或者有这样一道题,或者没有这样一道题, 总之,赵鑫都得不了满分。 (2)归纳推理 ①归纳推理的定义
归纳推理是指从一系列个别性的判断出发,引申出一般性结论的推理。这种推理的推导方向是由个别到一般。
②归纳推理的分类
归纳推理按照其推理的前提中是否考查了一类事物的全部,可以分为完全归纳推理和不完全归纳推理。不完全归纳推理,又分为简单枚举归纳推理和科学归纳推理。此外,还有概率归纳推理和溯因归纳推理。
需要注意的是,归纳推理中的“完全”和“不完全”是相对的,它是就推理前提的数量方面来说的。所谓“完全”是从整体上来对一类对象的全体加以考查;所谓“不完全”则是从局部(部分)上来对一类对象的全体加以推断。因此,它只具有相对的意义。
A.完全归纳推理
完全归纳推理,是以某一类对象中的每一个成员都具有(或不具有)某种属性为前提,因而推断出该类对象的全体都具有(或不具有)这种属性的推理。因此,完全归纳推理的前提是个别性的,其结论却是一般性的。完全归纳推理的结构可用公式表示为:
S1是(或不是)P,
相关推荐: