2019-2020学年中考数学模拟试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,AB是半圆圆O的直径,?ABC的两边AC,BC分别交半圆于D,E,则E为BC的中点,已知
?BAC?50o,则?C?( )
A.55o B.60o C.65o D.70o
2.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60°,∠α的补角∠β=120°,∠β>∠α B.∠α=90°,∠α的补角∠β=90°,∠β=∠α C.∠α=100°,∠α的补角∠β=80°,∠β<∠α D.两个角互为邻补角
3.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A.
3 2B.3 C.1 D.
4 34.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )
A.15m B.25m C.30m D.20m
5.OC分别在x轴和y轴上,OC=1.如图,在平面直角坐标系中,矩形OABC的两边OA,并且OA=5,若 把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
A.(﹣,)
91255B.(﹣
129,) 55C.(﹣
1612,) 55D.(﹣
1216,) 556.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( ) A.9 cm B.12 cm C.9 cm或12 cm D.14 cm
7.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )
A.a?b?0
B.ab<0
C.a>b
D.b?a?0
8.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为( )
A.15 m
B.53 m C.103 m D.123 m
9.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是( ) A.(1,1)
B.(2,2) C.(1,3)
D.(1,2) 10.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①② B.①③④ C.①②③⑤ D.①②③④⑤
11.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )
A.70° B.44° C.34° D.24°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.
14.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=
k的图象上,则k的值为_____. x
15.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.
16.如图,直线x=2与反比例函数y?点,则△PAB的面积是_____.
21和y??的图象分别交于A、B两点,若点P是y轴上任意一
xx
17.已知点A(x1,y1),B(x2,y2)在二次函数y?(x?1)2?1的图象上,若x1?x2?1,则
y1__________y2.(填“?”“?”“?”)
18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)
20.(6分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
2?x2?x?21.(6分)先化简?1?,再在1,2,3中选取一个适当的数代入求值. ??2x?1x?6x?9??22.(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?
23.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.
24.(10分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月
要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围; 售价(元/台) 400 x 月销售量(台) 200 250 (2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
25.(10分)如图,一次函数y??x?4的图象与反比例函数y?(1,a)、B两点.
k
(k为常数,且k?0)的图象交于Ax
求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB
的值最小,求满足条件的点P的坐标及△PAB的面积.
26.(12分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
此次共调查了 名学生;扇形统计图中D所在扇
形的圆心角为 ;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
27.(12分)某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、
相关推荐: