14.(3分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是 1<k<3 .
【分析】根据一次函数y=kx+b,k<0,b<0时图象经过第二、三、四象限,可得2﹣2k<0,k﹣3<0,即可求解; 【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限, ∴2﹣2k<0,k﹣3<0, ∴k>1,k<3, ∴1<k<3; 故答案为1<k<3;
【点评】本题考查一次函数图象与系数的关系;掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键. 15.(3分)如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=上,则tan∠BAO的值为 .
(x<0)的图象
【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到
S△BDO=,S△AOC=,根据相似三角形的性质得到=(
)2=
=5,求得=,根据三角函数的
定义即可得到结论.
【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D, 则∠BDO=∠ACO=90°,
∵顶点A,B分别在反比例函数y=(x>0)与y=∴S△BDO=,S△AOC=, ∵∠AOB=90°,
∴∠BOD+∠DBO=∠BOD+∠AOC=90°, ∴∠DBO=∠AOC, ∴△BDO∽△OCA,
(x<0)的图象上,
∴=(
)2=
=5,
∴=,
=.
,
∴tan∠BAO=故答案为:
【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.
16.(3分)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB= .
【分析】利用矩形的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',CD=B'D,设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度. 【解答】解:∵四边形ABCD为矩形, ∴∠ADC=∠C=∠B=90°,AB=DC,
由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°, ∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E, ∴∠AED=∠A'ED=∠A'EB=×180°=60°,
∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°, ∴∠ADE=∠A'DE=∠A'DC=30°, 又∵∠C=∠A'B'D=90°,DA'=DA', ∴△DB'A'≌△DCA'(AAS), ∴DC=DB', 在Rt△AED中, ∠ADE=30°,AD=2,
∴AE==,
设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2, ∴(
)2+22=(x+x﹣
)2,
解得,x1=故答案为:
(负值舍去),x2=.
,
【点评】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.
17.(3分)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=
.
【分析】根据轴对称,可以求得使得△PAB的周长最小时点P的坐标,然后求出点P到直线AB的距离和AB的长度,即可求得△PAB的面积,本题得以解决. 【解答】解:
,
解得,或,
∴点A的坐标为(1,2),点B的坐标为(4,5), ∴AB=
=3
,
作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小, 点A′的坐标为(﹣1,2),点B的坐标为(4,5), 设直线A′B的函数解析式为y=kx+b,
,得,
∴直线A′B的函数解析式为y=x+当x=0时,y=
,
,
即点P的坐标为(0,),
将x=0代入直线y=x+1中,得y=1, ∵直线y=x+1与y轴的夹角是45°, ∴点P到直线AB的距离是:(
﹣1)×sin45°=
=
,
∴△PAB的面积是:故答案为:
.
=,
【点评】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.
18.(3分)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为 (n,) .(n为正整数)
【分析】连OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,在Rt△OA1P1中,OA1=1,OP1=2,由勾股定理得出A1P1=坐标为( 2,
=
,同理:A2P2=
,A3P3=
,……,得出P1的坐标为( 1,
),P2的
),P3的坐标为(3,),……,得出规律,即可得出结果.
【解答】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示: 在Rt△OA1P1中,OA1=1,OP1=2,
相关推荐: