7.1 探索直线平行的条件(1) 1.引导学生探索、理解、掌握直线平行的条件——同位角相等,并能在数学图形及实际生活中正确识别平行线; 教学目标 2.经历探索两直线平行的条件的活动过程,提高对图形的认识、分析能力;体会说理的必要性,会进行简单的说理 ——根据图形中的已知条件,通过简单说理或推理,得出欲求结果. 教学重点 教学难点 理解平行线的识别方法——同位角相等,两直线平行. 会进行简单的说理. 学生活动 设计思路 较好地发挥了“情景导入”的作用.绝大部分学生自我感觉会判断AB与CD是否平行(姑积极思考,回答问题——大多数学生会凭直觉能判断它的边AB、CD是否平行吗? 发表自己的观点,有的说平行,有的说不平行.有定义之外,却又找不到足够的理由说服持有不学生可能会回答:“根据定义,在同一平面内永不同观点的同学.此情此景,在好奇心的驱动之相交的两条直线叫做平行线.因为AB、CD不相交,下,学生欲罢不能,很容易就产生了继续学习、所以平行.”也有学生可能会反驳:“图中AB、CD探索新知识的欲望.(在学生因观点不同而争论延伸后将会相交.” 的情景之下,教师导出新课课题——探索直线平行的条件.) 且不论对错),但除了朦胧的感觉以及平行线的教学过程(教师) 新课引入——情景导入: 如图1为一块左、右两边已破损的板材,你1 提问: 如图2,你会过直线l 外一点P画已知直线l的 平行线吗? 实践探索: 利用“几何画板”软件制作的教学课件可通过利用“几何画板”软件制作的课件的动以在课堂上快捷地多次播放,从而让学生在观画演示初步得出“两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.”(结合图这一基本事实. 形,直接给出同位角的概念) 观察、思考、感悟. 察与反思中感悟“同位角相等,两直线平行”1.回忆旧知. 2.学生代表上台演示画图. 复习旧知“过直线外一点画已知直线的平行线”,为的是起到承前启后的作用. 2 实践探索: 通过课件的动画演示(并通过作图工具的变式使学生意识到所使用的三角板中的角度并非一定要是45°、30°、60°、90°等特殊角度,而可以是任意角度)引导学生得出当具备条件“同位角相等”时,就有结论“两直线平行”成立(如图3),而且条件“同位角相等”不成立时,不能得出结论“两直线平行”(如图4). “几何画板”软件的“度量”功能在这里发挥了很好的作用,让数据说话!知识不再是观察、思考,并归纳、小结得出“同位角相等,教师灌输,而是由学生体验感悟而得.课堂上,两直线平行”.并在图形变式中,体会“同位角不相等,两直线不平行”. 教师对课件做一简单操作后,∠1的度数发生了变化,∠1与∠2不相等了,随之,AB与CD不再平行了!学生很自然地得出了“同位角相等”、“两直线平行”之间的因果关系. 3
相关推荐: