细胞内蛋白质的定位信号序列
1.内质网信号序列(ER signal sequence) 2.驻留信号( retention signal):
①ER驻留信号(包括KDEL即Lys-Asp-Glu-Leu和HDEI即His-Asp-Glu-Ile两个4肽信号序列);
②ER回收信号(ER retrieval signal,可溶蛋白的KDEL和ER膜蛋白上的KKXX)
3.核输入信号(nuclear import signal):也称NLS,常含Pro-Lys-Lys-Lys-Lys-Arg-Val
4.核输出信号(nuclear export signal):核糖体蛋白上相间排列的疏水性氨基酸
5.过氧化物酶体引导信号(peroxisomal targeting signal, PTS):C端的SKL即Ser-Lys-Leu
6.转运肽(transit peptide):即导肽,进入线粒体蛋白的N端的带正电的氨基酸(Arg)和不带电的氨基酸(Ser)构成的信号序列
一、 内质网信号肽
内质网蛋白定位信号总体可以分为返回信号和保持信号。内质网逃逸的蛋白主要通过COPⅠ有被小泡将其返回内质网,因此区分保持信号与返回信号一个很重要的手段是研究信号片段与运输小泡COPⅠ各亚基的相互作用情况。例如在研究甲硫蛋白(TPN)定位信号过程中,Paulsson 等通过Co-IP 发现具有“KKXX>” 序列的TPN 能与COPI 相互作用, 而C 端突变后的GFP-TPN-aa 不与COPI 发生相互作用,提示“KKXX>”为TPN 定位信号,且该信号通过COPI返回于内质网。蛋白转运到高尔基体后会被修饰, 人们可以利用不同的糖基程度区分保持信号与返回信号。例如在酵母[6]中,高尔基复合体有N-寡糖转移酶(OTase活性,并可将底物蛋白α-1,6-苷露糖基化,被α-1,6-苷露糖基化的蛋白则通过返回信号返回内质网。而哺乳动物[7]中运出的内质网蛋白被N-已酰氨基半乳糖转移
酶(GnT)修饰和十六烷基化,然后被岩藻糖转移酶修饰,因此可被N-乙酰氨基半乳糖(GalNAc)的亲合素识别并着色的蛋白为返回信号介导定位。此外,经过高尔基体修饰的蛋白能抵抗内切糖苷酶H(endo H)的酶切效应,因此这些蛋白的定位也依赖返回信号。
1、内质网定位信号
如前所述, 内质网蛋白定位信号可分为保持信号和返回信号。保持信号中研究较多的是适用于Ⅱ型内质网膜蛋白的双精氨酸信号[<X(2,3)-RR],返回蛋白研究较多的为适用于内质网腔蛋白的“H/ KDEL>”信号及适用于Ⅰ型内质网膜蛋白的双赖氨酸信号(UUUX>,其中3 个U 中至少2 个为赖氨酸,X 为任意氨基酸)。
1.1内质网保持信号
双精氨酸信号[<X(2,3)-RR]最早发现于组织相容性复合体Ⅱ(MHCⅡ),Zerangue 进一步确定了双精氨酸信号的有效信息,此外该信号一般与双亮氨酸信号并存,并在复合体的形成及转运中起调节作用。双精氨酸信号存在于大多数膜表面功能复合体的亚基(多为Ⅱ型跨膜蛋白)中。如G-蛋白偶联γ-氨基异丁酸受体亚基(GABAB1)利用双精氨酸信号定位于内质网,当GABAB1 与GABAB2 结合后双精氨酸信号被掩盖或被去除,复合体被运出内质网并在膜表面形成功能复合体。此外TRAM、钾离子通道亚基Kir1.1等都通过双精氨酸信号调节膜表面功能复合体的运出。既然双精氨酸信号主要存在于细胞膜表面功能复合体中,必然存在信号失活机制,以调节膜表面复合体的量[20]。双精氨酸信号的失活机制可总结为5 种: ①与复合体其他亚基形成功能复合体掩盖双精氨酸信号,如MHCⅡ β 链;②通过与14-3-3家族蛋白结合,如ADAM22 蛋白;③通过选择性剪接形成能与信号区相互作用的PDZ 结合结构域,如N-甲基-D-门冬氨酸受体亚基NR1-1(NMDAR)和红藻氨酸/ 海藻酸受体(KAR);④通过蛋白激酶A(PKA)和蛋白激酶C(PKC)的磷酸化,如NMDA受体NR1 亚基;⑤通过双亮氨酸信号或溶酶体定位信号抵消双精氨酸信号。
由于COPⅠ在“K(X)KXX>”信号的识别与返回中起重要作用,同时α 与β' 亚基中的WD40结构域在识别中起重要作用,那么COPⅠ在双精氨酸信号识别中是否具有作用呢? 研究表明COPⅠ复合体在某些带有双精氨酸信号蛋白的返回中起一定作用,但是作用并不明显,且涉及的蛋白数量有限。Hardt 等通过研究双精氨酸信号蛋白糖基化修饰情况, 发现仅有极少数的蛋白有糖基化修饰,证明该信号为保持信号而非返回信号。是什么机制将具有双精氨酸信号的蛋白保留在内质网中, 还有待进一步研究。
1.2返回信号
逃逸的内质网蛋白进入运输小泡并在膜囊结构中被修饰后,能介导其重新运回内质网的信号称为返回信号。
1.2.1内质网腔蛋白的返回信号
内质网腔蛋白返回信号的主要代表是“H/ KDEL>”,在哺乳动物中为“KDEL>”,
而在酵母中则为“HDEL>”。内质网中许多蛋白依靠此类信号返回定位于内质网, 比如“HDEL>” 介导蛋白二硫键异构酶(PDI) 的返回,“ADEL / DDEL /HDEL>”介导免疫球蛋白重链结合蛋白(BiP)的返回,“HIEL / KDEL>”介导甘油三酯水解酶(TGH)返回等。此外,也有人报道“KDEL>”信号存在于Ⅱ型跨膜蛋白中,但此类蛋白数量较少。此类蛋白可能通过“H/ KDEL>”信号与COPⅠ的间接相互作用返回内质网腔。如相对分子质量为39 000 的受体相关蛋白(RAP)是一种定位于内质网的分子伴侣,可保证低密度脂蛋白受体(LDLR)正确折叠,其C 端的“HNEL / KDEL”能保证RAP 返回内质网。
由于高尔基体和内质网腔中具有不同的pH 值,ERD2p 在高尔基体中结合RAP 的“H/ KDEL”基序[39],并在内质
网中将蛋白释放。此外,对蛋白ERD2.1、ERD2.2 的表达进行干扰 后,RAP 的定位明显受到影响。这表明含有“H/ KDEL>”信号的蛋 白可通过ERD 蛋白介导,并与COPⅠ发生相互作用,从而返回 内质网腔。
1.2.2内质网膜蛋白的返回
双赖氨酸信号(UUUX>,其中3 个U 中至少2 个为赖氨酸,X 为任意氨基酸)是Nilsson
等在腺病毒3 中发现的,主要存在于Ⅰ型内质网膜蛋白中,该信号在不同种属间具有一定的保守性。研究表明,该信号中的-4 位赖氨酸可以转移到-5 位,但精氨酸和组氨酸不能取代-4 位的赖氨酸。事实上赖氨酸附近的氨基酸也会影响定位效率, 如果两侧氨基酸为丝氨酸或丙氨酸时能介导蛋白定位, 但如果是氨基乙酸或脯氨酸时则介导定位效率较弱, 此外该信号靠近跨膜结构域时介导定位效率较高。许多内质网蛋白通过此信号定位于内质网,如TPN C 端“KKXX”序列可保证其定位于内质网,将双赖氨酸突变为双丙氨酸后, 则TPN 不定位于内质网中, 提示“KKXX>”是TPN 的定位信号。双赖氨酸信号主要通过直接与运输囊泡COPⅠ亚基作用使蛋白质返回内质网。COPⅠ是一个蛋白复合体,由α、β、β'、ε、γ、ζ、δ 等7 个亚基组成,Crosslinking 交联实验证明双赖氨酸信号与γ 亚基作用,酵母双杂实验证明信号与α 亚基作用,遗传突变证明α、β'、γ、δ 和ζ 等5 个亚基与双赖氨酸信号作用。
2.其他定位信号
内质网蛋白中, 有许多具有不明确序列特点的定位信号或多种定位信号,总体来说这些定位信号不具有明确性和广泛性。内质网定位信号中一类重要的信号为跨膜结构域, 根据蛋白的不同要求可分别利用跨膜的二级结构、跨膜的长度或疏水性等作为定位信号。如Ryanodine 受体(RyR)通过其第4 个跨膜区与第1 个跨膜结构域定位于内质网。跨膜结构被Rer1p识别而返回内质网,Rer1p 由188 个氨基酸残基组成, 定位于高尔基体,包含4 个跨膜结构域。如Rer1 蛋白识别Sec12p、γ-分泌酶等跨膜结构域,并辅助COPⅠ将其返回内质网。也有少数蛋白通过特异的二级结构定位。如成熟的T-细胞抗原受体(TCR)由6 个不同的多肽亚基组成,即α、β、γ、ε、δ 和ζ,一般情况下ε、ζ 稳定存在于内质网。Mallabiabarrena 等利用点突变的方式发现Lyr177、Leu180 和Arg183 在CD3-ε 的定位中具有保守性, 同时核磁共振显示以Lyr177 及其下游Leu180 为基础形成的α 螺旋使Lyr177 和Leu180 并列靠近,紧接着为β 转角,使Arg183靠近Leu180, 此二级结构可能是保证蛋白内质网定位的真正原因。有些蛋白同时存在2 种定位信号。如C 端的“KDEL”与N 端的疏水区共同帮助钙网蛋白(CRT)实现定位;N 端信号区和C端疏水区都能单独完成Secl2p 的内质网定位;C 端定位信号和疏水区的长度保证细胞色素b5 定位于内质网;CLN6 通过C端疏水区和N 端胞质区定位于内质网等。
此外, 有些蛋白通过与其他内质网蛋白作用而定位于内质网。如BAP31 在很多内质网膜蛋白的定位中起作用,Szczesna-Skorupa 等发现,CYP2C2 前29 个氨基酸的膜结构通过与BAP31 作用而定位于内质网;C-反应蛋白(CRP)与具有“HIEL /HTEL>”信号的羧酸酯酶(CE)相互作用而定位于内质网;UGT通过与神经酰胺半乳糖转移酶(cer-GalT)相互作用而定位于内质网等。
二.线粒体信号肽
线粒体蛋白的转运
指导前体蛋白进入线粒体的信号肽是目前被研究的最多和相对最清楚的(Alberts 等2007)。绝大多数线粒体定位的前体蛋白在其N端存在一段可以被剪切的信号序列, 称为前导序列(presequence)或前导肽(prepeptide)。它们一般是由10~80个氨基酸组成的带有一段疏水序列和一段正电荷序列(表面)的两亲多肽螺旋。研究表明, 不仅N端前导肽本身对线粒体前体蛋白的转运是必需的, 其所处的位置也至关重要。将前导肽从N端转移到C端之后, 虽然蛋白还可以转运至线粒体中, 但是蛋白在转运时C端与N端的方向却颠倒了(F?lsch 等1998)。
线粒体基质蛋白的转运是由位于外膜的TOM蛋白复合体[translocase of the outer mitochondrialmembrane (TOM) complex]和位于内膜上的TIM23蛋白复合体(translocase of the inner mitochondrialmembrane 23 complex)共同完成的。TOM 蛋白复合体能够识别胞质中的前体蛋白并使其与伴侣分子解离, 使前体蛋白通过 TOM 复合体自身形成的通道而进入线粒体膜间隙(intermembrane space, IMS),或者介导一些外膜定位的蛋白的跨膜。它由7 亚基构成, 其中 Tom20 亚基和Tom70 亚基是识别前体蛋白的主要受体, 并与伴侣分子 Hsp70 或者Hsp90 相互作用, 在 ATP 提供能量的前提下, 使前体蛋白与伴侣分子解离并使其进入TOM复合体形成的跨膜通道(Young 等2003)。核磁共振结构分析显示, Tom20亚基的胞质面与前体蛋白相互作用处存在一个结合前导肽表面疏水结构的沟槽(Abe等2000), 所以一般认为, Tom20 亚基是前体蛋白N 端前导肽的主要受体。而Tom22 亚基则辅助Tom20 亚基与前体蛋白结合(Neupert 和Herrmann2007)。其他的4 个亚基Tom40、Tom5、Tom6 和Tom7组成了TOM复合体的跨膜通道结构。TIM23复合体也是多由亚基组成, 它转运所有的线粒体基质蛋白、大部分的内膜定位的蛋白及一些膜间隙定位的蛋白(Neupert 和Herrmann 2007), 由 TIM23复合体介导的跨膜转运需要两种来源的能量供应——ATP 水解供能和膜两侧电位而形成的电势能(??) (Mokranjac 和Neupert 2005)。前体蛋白通过TOM复合体进入线粒体膜间隙之后, TIM23复合体通过Tim50亚基和Tim23亚基与其前导肽结合,并在能量供应的前提下使其通过内膜。由Tim44亚基将其呈递给基质中结合ATP的mtHsp70, mtHsp70就像TIM23 的一个亚基结合在其靠线粒体基质的一面, 而且mtHsp70对未折叠的蛋白有着很高的亲和力, 一旦前体蛋白从 TIM23 复合体中出现在基质中时, mtHsp70 就牢牢的结合上去(Alberts等2007)。Tim14 亚基继而诱导ATP 水解, 导致Hsp70亚基与TIM23 复合体解离。mtHsp70 的结合不仅起稳定前体蛋白的作用, 还防止正在转运进基质的蛋白“ 缩回” 膜间隙中(Neupert 和Herr-mann 2007)。一般情况下, 当前体蛋白的前导肽酶切位点进入基质的时候, 就会在基质信号肽酶(mitochondrial-processingpeptidase,MPP)的作用下将其切除(Braun和Schmitz 1997; Gakh 等2002)。
线粒体外膜定位的蛋白都是在细胞质中合成的, 包含 ?- 桶状蛋白和??螺旋蛋白两种类型。线粒体?-桶状蛋白的前体由TOM复合体转运至膜间隙之后与一些小Tim蛋白结合, 继而由另外一种位于线粒体外膜的转运子介导其跨膜定位, 这个转运子被命名为TOB (topogenesis of mitochondrial outer embrane ?-barrel)复合体(Paschen等2003)或SAM(sorting and assembly machinery)复合体(Wiedemann等2003)。??螺旋蛋白根据其定位信号序列在多肽中的位置的不同有着不同的转运机制。信号序列位于N末端的?螺旋蛋白通过Mim1 (mitochondrialimport 1)插入外膜; 而有些信号序列位于中部和C 末端的??螺旋蛋白则与?-桶状蛋白有着相同的转运机制, 另一些的转运机制目前尚不了解(Schmidt 等2010)。
线粒体内膜定位的蛋白质绝大多数来自细胞质, 通过TOM复合体进入膜间隙后, 主要以三种不同的方式定位于内膜(Neupert和Herrmann 2007)(图2)。第一种是依赖TIM22 的方式, 即进入膜间隙的前体蛋白与小Tim 蛋白结合并被传递给TIM22复合体, 由 TIM22 介导其跨膜定位,这个过程依赖膜两侧的电位差。第二种被称为转移终止方式the stop-transfer pathway), 采用这种方式的多数为单次跨膜蛋白。因为在前体蛋白的中部存在能被IM23复合体识别的
相关推荐: