第一范文网 - 专业文章范例文档资料分享平台

人教版八年级数学上册 全册全套试卷测试卷(含答案解析)

来源:用户分享 时间:2025/6/18 10:23:12 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

人教版八年级数学上册 全册全套试卷测试卷(含答案解析)

一、八年级数学三角形填空题(难)

1.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;

(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】?B?2?C 140°、120°或80° 【解析】 【分析】

(1)根据折叠性质可得∠A1B1B2=∠C,∠AA1B1=∠B,由三角形外角性质可得

∠AA1B1=2∠C,根据等量代换可得∠B=2∠C;(2)先求出经过三次折叠,∠BAC是△ABC的好角时,∠B与∠C的等量关系为∠B=3∠C,进而可得经过n次折叠,∠BAC是△ABC的好角时∠B与∠C的等量关系为∠B=n∠C,因为最小角是20o,是△ABC的好角,根据好角定义,设另两角分别为20mo,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m、n都是正整数可得m与n+1是8的整数因子,从而可以求得结果. 【详解】

(1)根据折叠性质得∠B=∠AA1B1,∠A1B1B2=∠C, ∵∠AA1B1=∠A1B1B2+∠C, ∴∠B=2∠C 故答案为:∠B=2∠C

(2)如图:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1B1C=∠A1A2B2, ∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;

∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1B1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°, ∴∠B=3∠C;

∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角; 故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C; ∵最小角为20°,

∴设另两个角为20m°和20mn°, ∴20°+20m°+20mn°=180°,即m(1+n)=8, ∵m、n为整数,

∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2. 解得:m=1,n=7;m=2,n=3,m=4,n=1, ∴另两个角为20°、140°或40°、120°或80°、80°,

∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角. 故答案为:140°、120°或80° 【点睛】

本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.

2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.

【答案】105°. 【解析】 【分析】

先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】

如图,∠ECD=45°,∠BDC=60°, ∴∠COB=∠ECD+∠BDC=45°+60°=105°. 故答案为:105°. 【点睛】

此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.

3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 【答案】12

【解析】

试题解析:根据题意,得 (n-2)?180-360=1260, 解得:n=11.

那么这个多边形是十一边形. 考点:多边形内角与外角.

4.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________. 【答案】5<a<11 【解析】 【分析】

根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可. 【详解】

解:根据三角形的三边关系可得:8-3<a<8+3, 解得:5<a <11, 故答案为:5<a<11. 【点睛】

此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.

5.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .

【答案】280° 【解析】

试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.

解:如图,∵∠EAB+∠5=180°,∠EAB=100°, ∴∠5=80°.

∵∠1+∠2+∠3+∠4+∠5=360°, ∴∠1+∠2+∠3+∠4=360﹣80°=280° 故答案为280°.

人教版八年级数学上册 全册全套试卷测试卷(含答案解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0hjg91meit5nd0e7n2yj9vfqx3d4pq0160k_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top