第一范文网 - 专业文章范例文档资料分享平台

基于51单片机的电子称设计

来源:用户分享 时间:2025/6/2 19:04:45 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

图2.7 INA126仪表放大结构图

放大器增益 ,通过改变RG的大小来改变放大器的增益。INA126 具有体积小、功耗低、精度高、噪声低和输入偏置电流低的特点。其最大输入偏置电流为20nA,这一参数反映了它的高输入阻抗。INA126在外接电阻RG时,可实现1~1000范围内的任意增益;工作电源范围为±2.3~±18V;最大电源电流为1.3mA;最大输入失调电压为125?V;频带宽度为120kHz(在G=100时)。

基于以上分析,我决定采用制作方便而且精度很好的专用仪表放大器INA126。 2.2.4 A/D转换器的选择

A/D转换部分是整个设计的关键,这一部分处理不好,会使得整个设计毫无意义。目前,世界上有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的∑-Δ型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。目前, ADC集成电路主要有以下几种类型:

(1)并行比较A/D转换器:如ADC0808、 ADC0809等 。并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为“闪烁式”ADC。它由电阻分压器、比较器、缓冲器及编码器四种分组成。这种结构的ADC所有位的转换同时完成,其转换时间主取决于比较器的开关速度、编码器的传输时间延迟等。缺点是:并行比较式A/D转换的抗干扰能力差,由于工艺限制,其分辨率一般不高于8位,因此并行比较式A/D只适

合于数字示波器等转换速度较快的仪器中,不适合本系统。

(2) 逐次逼近型A/D转换器:如:ADS7805、ADS7804等。逐次逼近型ADC是应用非常广泛的模/数转换方法,这一类型ADC的优点:高速,采样速率可达 1MSPS;与其它ADC相比,功耗相当低;在分辨率低于12位时,价格较低。缺点:在高于14位分辨率情况下,价格较高;传感器产生的信号在进行模/数转换之前需要进行调理,包括增益级和滤波,这样会明显增加成本。

(3)积分型A/D转换器:如:ICL7135、ICL7109、ICL1549、MC14433等。积分型ADC又称为双斜率或多斜率ADC,是应用比较广泛的一类转换器。它的基本原理是通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现A/D转换。积分型ADC两次积分的时间都是利用同一个时钟发生器和计数器来确定,因此所得到的表达式与时钟频率无关,其转换精度只取决于参考电压VR。此外,由于输入端采用了积分器,所以对交流噪声的干扰有很强的抑制能力。若把积分器定时积分的时间取为工频信号的整数倍,可把由工频噪声引起的误差减小到最小,从而有效地抑制电网的工频干扰。这类ADC主要应用于低速、精密测量等领域,如数字电压表。其优点是:分辨率高,可达22位;功耗低、成本低。缺点是:转换速率低,转换速率在12位时为100~300SPS。

(4)压频变换型ADC:其优点是:精度高、价格较低、功耗较低。缺点是:类似于积分型ADC,其转换速率受到限制,12位时为100~300SPS。 A/D转换器选用的原则:

①A/D 转换器的位数。A/D 转换器决定分辨率的高低。在系统中,A/D 转换器的分辨率应比系统允许引用误差高一倍以上。

②A/D 转换器的转换速率。不同类型的A/D 转换器的转换速率大不相同。积分型的转换速率低,转换时间从几豪秒到几十毫秒,只能构成低速A/D 转换器,一般用于压力、温度及流量等缓慢变化的参数测试。逐次逼近型属于中速A/D 转换器,转换时间为纳秒级,用于个通道过程控制和声频数字转换系统。 ③是否加采样/保持器。

④A/D 转换器的有关量程引脚。有的A/D 转换器提供两个输入引脚,不同量程范围内的模拟量可从不同引脚输入。

⑤A/D 转换器的启动转换和转换结束。一般A/D 转换器可由外部控制信号启动转换,

这一启动信号可由CPU提供。转换结束后A/D 转换器内部转换结束信号触发器置位,并输出转换结束标志电平。通知微处理器读取转换结果。

⑥A/D 转换器的晶闸管现象。其现象是在正常使用时,A/D 转换器芯片电流骤增,时间一长就会烧坏芯片。为防止这种现象,可采取的措施:加强抗干扰措施,尽量避免较大的干扰电流进入电路;加强电源稳压滤波措施, 在A/D 转换器电源入口处加退耦滤波电路,为防止窄脉冲波窜入在电解电容上再接一高频滤波电容;在A/D 转换器的电源端接一限流电阻,可在出现晶闸管现象时,有效地把电流限定在允许范围内,以防止烧坏器件。

选择A/D 转换器除考虑上述要点外,为防止对A/D 转换器的技术指标的影响,还要注意几个问题:工作电源电压是否稳定;外接时钟信号的频率是否合适;工作环境温度是否符合器件要求;与其它器件是否匹配;外接是否有强的电磁干扰;印刷线路板布线是否合理。

由上面对传感器量程和精度的分析可知:12位A/D精度:称重0~2Kg范围2Kg/4096=0.488g;而8位A/D精度:称重2Kg~10Kg范围,8Kg/256=31.25g;

考虑到其他部分所带来的干扰,12位A/D转换器可以满足系统精度要求。

图2.8 传感器与ADC0832连接图

图2.9 A/D574电路设计

AD574是单片高速12位逐次比较型A/D转换器,内置双极性电路构成的混合集成转换显片,具有外接元件少,功耗低,精度高等特点,并且具有自动校零和自动极性转换功能,只需外接少量的阻容件即可构成一个完整的A/D转换器。其性能指标为:其精度为5/2048=0.002,远远小于误差±0.005。且其价格明显低于其他同类产品(如MAX197),因此,我们选用了此芯片,作为模数转换器。

考虑到本系统中对物体重量的测量和使用的场合,精度要求不是太苛刻,转换速率要求不高,根据系统的精度要求以及综合的分析,本设计采用了8位串行ADC0832转换器及12位逐次逼近型A/D转换器AD574双精度称重系统。

通过查阅资料,还发现了ADI公司推出的一款高分变率的A/D转换器AD7730。其具有双通道差分模拟输入、24位无失码、21位有效分辨率、±0.0018%线性误差等特点。由于采用??Δ转换技术,量化噪声被移至A/D转换的频带以外,因此AD7730特别适合用于宽动态范围内的低频信号A/D转换,具有优良的抗噪声性能。输入信号分别为有极性与无极性两种选择。无极性输入时,输入信号0mV~20mV、0mV~40mV、0mV~60mV、0mV~80mV可选;有极性输入时,输入信号0mV~±10mV、0mV~±20mV、0mV~±30mV、0mV~±40mV可选。AD7730主要特点:分辨率50000;失调温漂≤1ppm/oC;增益温漂2 ppm/oC;电源抑制比>150dB;缓冲差动输入:工作基准电压为1~5V;两通道可

搜索更多关于: 基于51单片机的电子称设计 的文档
基于51单片机的电子称设计.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0hnaa18nx33blzb1bszw_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top