辽宁省大连市金普新区2019-2020学年中考数学模拟试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为( )
A.3
B.2
C.23 D.1?23
??2.下列条件中不能判定三角形全等的是( ) A.两角和其中一角的对边对应相等 C.两边和它们的夹角对应相等
B.三条边对应相等 D.三个角对应相等
3.O是坐标原点,如图,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为( )
kx
A.﹣12 B.﹣32 C.32 D.﹣36
4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
10001000?=2 xx?3010001000?C.=2 xx?30A.10001000?=2 x?30x10001000?D.=2 x?30xB.
5.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( ) A.平均数
B.中位数
C.众数
D.方差
6.AB=6,AD=9,∠BAD的平分线交BC于点E,BG⊥AE,如图,在?ABCD中,交DC的延长线于点F,垂足为G,若BG=42,则△CEF的面积是( )
A.22 B.2 C.32 D.42 7.下列各式计算正确的是( )
A.6?3?3 B.12?3?6 C.3?5?35 D.10?2?5 8.关于x的不等式2x?a??1的解集如图所示,则a的取值是( )
A.0
B.?3
C.?2
D.?1
9.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( ) A.抛物线开口向下
B.抛物线与x轴的交点为(﹣1,0),(3,0) C.当x=1时,y有最大值为0 D.抛物线的对称轴是直线x=
3 210.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
11.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.
4??23 3B.
8??43 3C.
8??23 3D.
8??4 312.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=
k的图象上,则k的值为_____. x
14.如图,在?ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 ▲ (结果保留π).
15.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)
16.因式分解:a3-a=______.
x217.如图,平行于x轴的直线AC分别交抛物线y1?x(x≥0)与y2?(x≥0)于B、C两点,过点C
52作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则
DE=_. AB
18.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是
0.2,则袋中有________个红球.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想??转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程2x?3?x的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
20.(6分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,PD是⊙O的切线;△ABD∽△DCP;过点D作BC的平行线与AC的延长线相交于点P.求证:求证:当AB=5cm,AC=12cm时,求线段PC的长.
21.(6分)如图,二次函数在函数图像上,如图①,连接动点在线段是否存在点
,线段
轴,且
的图像与轴交于、两点,与轴交于点,.点
,直线是抛物线的对称轴,
恰好在线段
是抛物线的顶点.求、的值;
上,求点的坐标;如图②,
.试问:抛物线上
的坐标;
上的点关于直线的对称点
上,过点作轴的垂线分别与,使得
与
交于点,与抛物线交于点
的面积相等,且线段的长度最小?如果存在,求出点
如果不存在,说明理由.
2(x?3)?4x?722.(8分)解不等式组:{x?2并写出它的所有整数解.
?x223.(8分)解方程:
x?14?2?1. x?1x?124.(10分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
25.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
26.(12分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
根据图中信息求出m? ,n? ;请你帮助
他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
27.(12分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数
相关推荐: