第一范文网 - 专业文章范例文档资料分享平台

高考一轮复习考点规范练33二元一次不等式(组)与简单的线性规划问题资料

来源:用户分享 时间:2025/11/11 1:10:21 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

??+2??≤12,

则{2??+??≤12,z=300x+400y, ??≥0,??≥0,

在坐标平面内画出该不等式组表示的平面区域及直线300x+400y=0,平移该直线,

当平移到经过该平面区域内的点A(4,4)时,相应直线在y轴上的截距达到最大,此时z=300x+400y取得最大值,最大值是z=300×4+400×4=2 800,

即该公司可获得的最大利润是2 800元.

能力提升组

??+??-2≤0,

4

12.若不等式组{??+2??-2≥0,表示的平面区域为三角形,且其面积等于3,则m的值为( )

??-??+2??≥0A.-3 C.3 答案:B

解析:如图,要使不等式组表示的平面区域为三角形,则不等式x-y+2m≥0表示的平面区域为直线x-y+2m=0下方的区域,且-2m<2,即m>-1.这时平面区域为三角形ABC.

4

B.1 D.3

??+??-2=0,??=2,由{解得{则A(2,0).

??=0,??+2??-2=0,??+??-2=0,

由{ ??-??+2??=0,??=1-??,解得{

??=1+??,则B(1-m,1+m). 同理C(3,

2-4??2+2??

),M(-2m,0). 35

因为12+2??

S△ABC=S△ABM-S△ACM=2·(2+2m)·[(1+??)-3]=

(??+1)2(??+1)2

,由已知得33

=3,解得m=1(m=-3<-1舍

4

去).

??≥0,

13.(2015吉林通化一模)设x,y满足约束条件{????≥0??

,若z=??+2??+33

??+1的最小值为2,则a的值为 .

3??+4??≤1,

答案:1

解析:∵??+2??+3

2(??+1)

??+1=1+??+1,

??+1

??+1表示过点(x,y)与(-1,-1)连线的斜率,易知a>0,

∴可作出可行域,由题意知??+1

1

(??+1

-1)11??+1的最小值是4,即??+1)

min

=

0-(3??-(-1)=

3??+1=4?a=1.

??+2??-4≤0,

14.当实数x,y满足{??-??-1≤0,时,1≤ax+y≤4恒成立,则实数a的取值范围是 .

??≥1答案:[1,32]

解析:作出题中线性规划条件满足的可行域如图阴影部分所示,令z=ax+y,即y=-ax+z.

作直线l0:y=-ax,平移l0,最优解可在A(1,0),B(2,1),C(1,3

2)处取得. 1≤??≤4,

故由1≤z≤4恒成立,可得{1≤2??+1≤4,解得1≤a≤3

≤??+2.

13

2≤4,

6

4??-3??+4≥0,4??-??-4≤0,

15.设x,y满足约束条件{若目标函数z=ax+by(a>0,b>0)的最大值为8,求ab的最大值.

??≥0,??≥0,解:画出可行域,如图所示,目标函数变形为l:y=-x+.由已知,得-<0,且纵截距最大时,z取到最大值,故当直线l过点B(2,4)时,目标函数取到最大值,即2a+4b=8,又a>0,b>0,由基本不等式,得2a+4b=8≥4√2????,即ab≤2(当????

????

????

4b=4,即a=2,b=1时取“=”),故ab的最大值为2.

7

且仅当2a=

高考一轮复习考点规范练33二元一次不等式(组)与简单的线性规划问题资料.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0ijtj9h20p1xu1x81dzc4m0xd0pwbf00nkx_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top