3.分数与除法的关系。由学生回顾分数与除法的关系,教师板书。 二、新课讲授
1.教学教材第57页的例1。由学生拿3张同样的正方形或方形纸片,分别对折一次,两次,四次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书: (为什么相等?) 2.引导学生观察它们的分子,分母各是按照什么规律变化的?学生以小组为单位,请代表发言。
随着学生汇报,老师板书。
3.提问:你还能举出这样的例子吗?
4.观察以上例子,你能得出什么结论?学生讨论,汇报。 板书:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
提问:为什么0要除外?(学生讨论)
小结:分子和分母如果都乘上0,则分数成为 ,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。5.提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?
【课堂作业】
学生完成教材第58页练习十四的第1~5题。 1.学生先独立涂色,然后比较大小并说明理由。
2.学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。4.学生独立完成,说一说是怎样比较的。可以把25化成410,也可以把410化成25,再比较。5.引导学生先应用分数的基本性质,判断哪几个分数是
51
00相等的,然后在直线上把这个点画出来,老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。
相等的分数可以用同一个点表示 【课堂小结】
谁能说一说分数的基本性质是什么? 【板书设计】
分数的基本性质(1)
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
第7课时 分数的基本性质(2)
【教学内容】:分数基本性质的运用(教材第57页的例2以及第58~59页练习十四的第6~13题)。
【教学目标】: 1.通过教学,使学生巩固对分数的基本性质的理解和掌握分数的基本性质的运用。
2.培养学生应用所学数学知识解决问题的能力。 3.培养学生认真审题的良好习惯。 【重点难点】:正确运用分数的基本性质解决问题。 【教学过程】: 一、复习导入
上节课我们学习了分数的基本性质,谁能说一说分数的基本性质的内容。学生回忆并口头回答。
二、新课讲授
1.出示教材第57页例2,把和
2310化成分母是12而大小不变的分数。 24(1)提问:谁能说一说,在审题过程中要注意什么? (2)学生审题,分析要点:①分母是12;②大小不变。
(3)提问:想一想,怎样使分母变为12。要使分数大小不变,分子应怎样变?
学生思考后再回答,然后请学生试着在教材上填写。
老师以为例提示:先想分母3怎样变成12,再想要使分数大小不变,分子应该怎样变化。
提问:你是根据什么知识解答这个题的?应注意什么问题? 小结:注意分子和分母要同时乘或者除以0以外的相同数。
52
232.完成教材第58~59页练习十四的第6~10题。 学生独立完成,集体订正。
3.完成教材第59页练习十四的第11题。 学生先独立思考,然后集体交流方法。
可以都统一化成分子是1的分数,也可以统一化成分母是16的分数,然后进行比较。
4.完成教材第59页练习十四的第12题。
学生审题并思考方法,集体交流,可以化成分母都是100的分数,也可以统一化成分母是50或25的分数,再进行比较。
【课堂作业】
1.把下面的分数化成分母是20而大小不变的分数。
2.把下面的分数化成分子是1而大小不变的分数。
3.在下面的括号里填上适当的数。
4. 选择。(把正确答案的序号填在括号里)
(1)把一个分数的分子乘3,分母除以3,这个分数的值( )。 A.大小不变 B.扩大到原来的6倍 C.缩小到原来的 D.扩大到原来的9倍 (2)一个真分数的分子、分母同时加上2以后,得到的分数值一定()。 A.与原分数值相等 B.比原分数值小 C.比原分数值大 D.无法确定 【课堂小结】
通过本节课的练习,你能熟练地掌握分数的性质吗?运用分数的基本性质时要注意什么?
【板书设计】
53
第8课时 最大公因数(1)
【教学内容】:最大公因数的概念和求两个数的最大公因数(教材第60页的例1、例2,第61页“做一做”及第63页练习十五的第1~4题)。
【教学目标】:
1.使学生理解和掌握公因数和最大公因数的概念。 2.能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3.通过数学活动过程,训练学生思维的有序性和条理性。 【重点难点】:
最大公因数的求法。 【教学过程】: 一、复习导入
1.教师提问:什么是因数?因数有什么特点?
学生回顾前面的知识,在小组中交流后汇报,老师总结使学生了解因数的几个特点:
(1)最小的因数是1,最大的因数是它本身; (2)因数的个数是有限的;
(3)一个数除以它的因数,商一定是自然数(0除外)。 2.写出16和12所有因数。学生独立练习,然后交流检查。
教师提问:你是怎样找一个数的因数的?(组织学生交流,再说一说) 【新课讲授】
1.教学公因数和最大公因数。 (1)出示教材第60页例1。 (2)找出8的因数。(1、2、4、8) (3)找出12的因数。(1、2、3、4、6、12) (4)再找12、8的因数中两个数的公有因数。(1、2、4) 教师板书:
指出:1、2、4是8和12公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
54
教师适时引出课题,并板书:最大公因数。 2.组织小练习。
(1)完成教材第61页的“做一做”第1题。
(2)完成教材第61页的“做一做”第2题,说一说哪几个数写在左边,哪几个数写在右边,哪几个数写在中间。
(3)完成教材第63页练习十五的第1题。请学生填在教材上,说一说是怎样找的。
3.教学求两个数的最大公因数的方法。
(1)出示教材第60页例2:怎样求18和27的最大公因数?
(2)学生先独立思考用自己想到的方法试着找出18和27的最大公因数。
(3)小组讨论,互相启发,再在全班交流,学生可能会说出: 方法一:
先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18的因数,再看18的因数中有哪些是27的因数,再看哪个最大。
方法三:先写出27的因数,再看27的因数中哪些是18的因数。从中找出最大的。
(4)引导学生看教材第61页的“你知道吗”,指导学生自学分解质因数的方法,找两个数的最大公因数。
24和36的最大公因数=2×2×3=12
指出:两个数所有公因数的积,就是这两个数的最大公因数。 (5)巩固小练习:完成教材第61页的“做一做”第2、3题。 第2题:学生根据所学知识站队,并说出这样站队的道理。 第3题:学生先独立观察每组数有什么特点,再进行交流。 小结:求两个数的最大公因数有哪些特殊情况?
① 两个数成倍数关系时,较小的数就是它们的最大公因数。 ②当两个数只有公因数1时,它们的最大公因数也是1。
55
相关推荐: