第一范文网 - 专业文章范例文档资料分享平台

弹性力学空间问题

来源:用户分享 时间:2025/5/28 20:57:18 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2、载荷作用区域外的沉陷

下面讨论半无限体表面的沉陷。对于半无限体表面上的点M,则必须首先区分它在载荷圆形区域之外,还是在圆形区域之内。

如果点M 位于载荷圆形区域之外,则由图可见

变量s 和?作为描述圆形区域的局部坐标,则根据公式可得图中阴影部分的合力在M点产生的沉陷为

因此,M点的总沉陷为

对上式进行积分,注意到弦mn的长度,即 并且在积分时考虑对称性,可得

积分上限?1是?的最大值,即圆的切线与OM之间的夹角,对于确定的点M,它是确定的值。为了简化运算,我们引进变量? ,由图可见,它与??之间的关系为

a sin??= ? sin?

由此可得

13

将上式代入积分公式,并且注意到当?从0变化到?1 时,?由0变化到?/2,于是

上式右边的两个积分为椭圆积分,他们可以按照?a/??的数值从函数表中查出。当??=a时,则

3、载荷作用区域内的沉陷

如果点M位于载荷圆域内部,考虑图中的阴影部分

(其面积为dA=sd?ds)在点M 引起的沉陷,然后经积分,得到总沉陷为

14

由于弦mn的长度,即 ,而?是由0变化到?/2的,所以

利用关系式a sin? =?? sin?,则上式成为

上式右边的椭圆积分,可以通过查表而得到。若令??=0,则可以得到公式

的结果,它是半无限体表面的最大沉陷。将公式

和公式 相比

较,可见最大沉陷是载荷圆边界沉陷的?/2倍。由公式可以看到,最大沉陷不仅与载荷集度q成正比,而且还与载荷圆的半径成正比。

半无限体表面作用分布载荷的应力分量同样可以使用叠加法求解。 §10.5 赫兹接触问题

学习思路:

1881年,赫兹(hertz,H.R)首先研究了弹性球体的接触问题。本节以弹性球体的接触介绍接触问题的基本概念。

由于球体的接触区域对于弹性球体是局部,因此,弹性球体的接触问题可以以半无限平面分布载荷解为基础,分析接触区域的局部变形。这里的问题是球体接触压力是未知函数,因此必须首先根据球体的变形确定未知接触压力。

赫兹认为接触区域(半径为a的圆)的压力与接触区域半球面的纵坐标成正比。根据这一假设和球体变形分析,可以确定接触压力分布函数和接触区域。

进一步的讨论可以确定球体的接触应力和变形。

15

学习要点:

1、弹性球体变形分析;2、球体接触压力分析。

1、弹性球体变形分析

设弹性球体的半径分别为A1和A2,变形前两球体在O点接触(相切)。两个球体在其中心均受集中力F的作用,变形后球体

在半径为 a 的圆形区域接触。接触区域内任意一点与中心的距离为?,并且球体在?的沉陷分别为?1, ?2 ,则

其中 。

由于接触区域对于弹性球体是局部,因此??远小球体的半径A1和A2, 因此可以采用半无限平面解答分析接触局部变形。

对于两球体距离接触面足够远的任意两点A1和A2,由于相互压缩而相互接近的距离为?,相对位移分别为w1和w2,则

如果将球体接触面看作弹性半无限体作用圆形区域分布载荷问题,A1和A2为球体接触面上的点,则位移为

16

搜索更多关于: 弹性力学空间问题 的文档
弹性力学空间问题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0jfi697zwh03ypj6btef_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top