.
呈抛物线形。下面很容易推导出υz与υzmax的关系为:
?rz??zmax[1?(R)2]
9.解:列1-2处的伯努力方程:(以2处为0基点),用相对压强计算:
v220?1v22?gh2?0?2?0
由于水槽的直径比虹吸管的直径大很多,那么就可以近似设v1等于0。 代入可得v2?2gh2?8.86m/s
流量Q?vd22243.14?2ghd2?22?4?3.14?6.26?10?3m3/s 同理列2-3处的伯努利方程(p2为什么为0):(以2处为0基点)
p23??v232?g(hv21?h2)?0?2?0 根据质量守恒:3处和2处的速度满足:
v24d2?v34d2v21,得v3?24?2.215m/s 代入得:
??v2p??2?v21?2g???(h?3?1?h2)??g??22024.3Pa
???负号表示C处的压强低于一个大气压,处于真空状态。正是由于这一真空,才可将水箱中的水吸起。
用绝对压强表示:101325-22024.3=79300.7 Pa.
.
.
第五章习题参考答案(仅限参考)
1.a 2.b 3.d 4.c 5.d
L?vm26.解: ?p??d2
假设雷诺数小于2300,有λ?6464??Revmd,代入上式得:
L?vm264?L?vm264?L?vm?p????
d2vmdd22d22d2?p2?0.152?0.965?106??1.84m/s 则vm??464?L?64?4?10?920?1000Re?vmd??1.84?0.15?690?2300,符合假设
4?10?43.14?0.152?1.84Q?Avm?vm??0.03?m3s?
44另一种简单计算方法: 假设雷诺数小于2300,有
?d2?p2d2?p0.152?0.965?106vm?R???1.84m/s ?48?L32?L?32?4?10?920?1000Re?vmd??1.84?0.15?690?2300,符合假设
4?10?43.14?0.152?1.84Q?Avm?vm??0.03?m3s?
44
7.解: vm??d24Q4?0.03??0.425?ms? ?d23.14?0.32.
.
Re?λ?vmd??0.425?0.3?1063?2300
1.2?10?464?0.06 ReLvm2300.4252?hf???0.06???0.06m
d2g0.32?9.81
8.解: vm?4Q4?0.05??1.02?ms? 22?d3.14?0.25Re?vmd??1.02?0.25?2.5?105?105 ?61.007?10?d?0.0013?0.0052;查莫迪图得λ?0.031
0.25Lvm21001.022?hf???0.031???0.66m
d2g0.252?9.81
0.3294Q2?60?1.4?ms?v??9.解: m 22?d3.14?0.054??p?L?vm2?h???????
?g?d?2g??
2?pL2?6168.610????0.03??6.29?6?0.29 22?vmd1000?1.40.05L?vm2?700?1.132???2.9?3?0.02??6.64m 10.解:?h?????????d?i2g?0.15?2?9.81i?
11.解:Re?vmd??vmd???0.25?0.305?1.235?5269?10
1.78?10?5.
.
λ?0.3164?0.037 0.25Red4?()211??2?p?L??vm238?4?(d)3 3211?0.396??0.305?0.037?1.23?0.252???5.58Pa380.390.0012
1200004Q60?60?25?ms? ?12.解:vm?2?d3.14?d24?解得d=1.3m
Re?vmd??25?1.365?2.07?10?10 ?51.57?10?0.0005??0.000385;查莫迪图得λ?0.0155 d1.3L?vm2?120?252??h?????????2.5?11?0.0155??921.57m ??d?i2g?1.3?2?9.81i??p??g?h?1.23?9.81?921.57?11120Pa
pi?pM?pa??p??1.569?1.01325?0.11??105?2.471?105Pa
1750060?60?11.9?ms? 13.解:vm?4Q?2?d3.14?0.7224?Re?vmd??11.9?0.725?5.46?10
0.157?10?4(1)
?d?0.2?0.000278;查莫迪图得λ?0.0147 720Lvm228.611.92?hf???0.0147???4.21m
d2g0.722?9.81.
相关推荐: