µ¼ÊýÁ·Ï°Ìâ
1£®£¨±¾ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êýf(x)?ax3?bx2?(c?3a?2b)x?dµÄͼÏóÈçͼËùʾ£®
£¨I£©Çóc,dµÄÖµ£»
£¨II£©Èôº¯Êýf(x)ÔÚx?2´¦µÄÇÐÏß·½³ÌΪ3x?y?11?0£¬Çóº¯Êýf(x)µÄ½âÎöʽ£»
£¨III£©ÔÚ£¨II£©µÄÌõ¼þÏ£¬º¯Êýy?f(x)Óëy?1f?(x)?5x?m3µÄͼÏóÓÐÈý¸ö²»Í¬µÄ½»µã£¬ÇómµÄȡֵ·¶Î§£® 2£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êýf(x)?alnx?ax?3(a?R)£® £¨I£©Çóº¯Êýf(x)µÄµ¥µ÷Çø¼ä£»
£¨II£©º¯Êýf(x)µÄͼÏóµÄÔÚx?4´¦ÇÐÏßµÄбÂÊΪ
1mg(x)?x3?x2[f'(x)?]ÔÚÇø¼ä£¨1£¬3£©Éϲ»Êǵ¥µ÷º¯Êý£¬Çó
323,Èôº¯Êý2mµÄȡֵ·¶Î§£®
3£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
ÒÑÖªº¯Êýf(x)?x3?ax2?bx?cµÄͼÏó¾¹ý×ø±êԵ㣬ÇÒÔÚx?1´¦È¡µÃ¼«´óÖµ£® £¨I£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨II£©Èô·½³Ì
(2a?3)2f(x)??9Ç¡ºÃÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Çóf(x)µÄ½âÎöʽ£»
|f(2sin?)?f(2sin?)|?81£®£¨III£©¶ÔÓÚ£¨II£©Öеĺ¯Êýf(x)£¬¶ÔÈÎÒâ?¡¢??R£¬ÇóÖ¤£º
4£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖª³£Êýa?0£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬º¯Êýf(x)?ex?x£¬g(x)?x2?alnx£® £¨I£©Ð´³öf(x)µÄµ¥µ÷µÝÔöÇø¼ä£¬²¢Ö¤Ã÷ea?a£» £¨II£©ÌÖÂÛº¯Êýy?g(x)ÔÚÇø¼ä(1,ea)ÉÏÁãµãµÄ¸öÊý£® 5£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
ÒÑÖªº¯Êýf(x)?ln(x?1)?k(x?1)?1£®
£¨I£©µ±k?1ʱ£¬Çóº¯Êýf(x)µÄ×î´óÖµ£»
£¨II£©Èôº¯Êýf(x)ûÓÐÁãµã£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
6£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªx?2ÊǺ¯Êýf(x)?(x2?ax?2a?3)exµÄÒ»¸ö¼«Öµµã£¨e?2.718???£©£® £¨I£©ÇóʵÊýaµÄÖµ£»
£¨II£©Çóº¯Êýf(x)ÔÚx?[3,3]µÄ×î´óÖµºÍ×îСֵ£®
2 7£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
ÒÑÖªº¯Êýf(x)?x2?4x?(2?a)lnx,(a?R,a?0) £¨I£©µ±a=18ʱ£¬Çóº¯Êýf(x)µÄµ¥µ÷Çø¼ä£» £¨II£©Çóº¯Êýf(x)ÔÚÇø¼ä[e,e2]ÉϵÄ×îСֵ£® 8£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êýf(x)?x(x?6)?alnxÔÚx?(2,??)Éϲ»¾ßÓе¥µ÷ÐÔ£® £®£®£®
£¨I£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨II£©Èôf?(x)ÊÇf(x)µÄµ¼º¯Êý£¬Éèg(x)?f?(x)?6?272x2£¬ÊÔÖ¤Ã÷£º¶ÔÈÎÒâÁ½¸ö²»
ÏàµÈÕýÊýx1¡¢x2£¬²»µÈʽ|g(x1)?g(x2)|?38|x1?x2|ºã³ÉÁ¢£® 9£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
12 £¨I£©ÌÖÂÛº¯Êýf(x)µÄµ¥µ÷ÐÔ£»
ÒÑÖªº¯Êýf(x)?x2?ax?(a?1)lnx,a?1.
f(x1)?f(x2)??1.
x1?x2 £¨II£©Ö¤Ã÷£ºÈôa?5,Ôò¶ÔÈÎÒâx1,x2?(0,??),x1?x2,ÓÐ 10£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
12£¨I£©Èôº¯Êýf(x),g(x)ÔÚÇø¼ä[1,3]É϶¼Êǵ¥µ÷º¯ÊýÇÒËüÃǵĵ¥µ÷ÐÔÏàͬ£¬Çó
ÒÑÖªº¯Êýf(x)?x2?alnx,g(x)?(a?1)x,a??1£® ʵÊýaµÄȡֵ·¶Î§£»
£¨II£©Èôa?(1,e](e?2.71828)£¬ÉèF(x)?²»µÈʽ|F(x1)?F(x2)|?1³ÉÁ¢£®
f(x)?g(x)£¬ÇóÖ¤£ºµ±x1,x2?[1,a]ʱ£¬
11£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÉèÇúÏßC£ºf(x)?lnx?ex£¨e?2.71828???£©£¬f?(x)±íʾf(x)µ¼º¯Êý£® £¨I£©Çóº¯Êýf(x)µÄ¼«Öµ£»
£¨II£©¶ÔÓÚÇúÏßCÉϵIJ»Í¬Á½µãA(x1,y1)£¬B(x2,y2)£¬x1?x2£¬ÇóÖ¤£º´æÔÚΨһµÄx0?(x1,x2)£¬Ê¹Ö±ÏßABµÄбÂʵÈÓÚf?(x0)£® 12£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
¶¨ÒåF(x,y)?(1?x)y,x,y?(0,??)£¬
£¨I£©ÁÊýf(x)?F(3,log2(2x?x2?4))£¬Ð´³öº¯Êýf(x)µÄ¶¨ÒåÓò£»
£¨II£©ÁÊýg(x)?F(1,log2(x3?ax2?bx?1))µÄͼÏóΪÇúÏßC£¬Èô´æÔÚʵÊýbʹµÃÇúÏßCÔÚx0(?4?x0??1)´¦ÓÐбÂÊΪ£8µÄÇÐÏߣ¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨III£©µ±x,y?N*ÇÒx?yʱ£¬ÇóÖ¤F(x,y)?F(y,x)£®
µ¼ÊýÁ·Ï°Ìâ´ð°¸
1£®£¨±¾ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êýf(x)?ax3?bx2?(c?3a?2b)x?dµÄͼÏóÈçͼËùʾ£®
£¨I£©Çóc,dµÄÖµ£»
£¨II£©Èôº¯Êýf(x)ÔÚx?2´¦µÄÇÐÏß·½³ÌΪ3x?y?11?0£¬Çóº¯Êýf(x)µÄ½âÎöʽ£»
£¨III£©ÔÚ£¨II£©µÄÌõ¼þÏ£¬º¯Êýy?f(x)Óëy?1f?(x)?5x?m3µÄͼÏóÓÐÈý¸ö²»Í¬µÄ½»µã£¬ÇómµÄȡֵ·¶Î§£®
½â£ºº¯Êýf(x)µÄµ¼º¯ÊýΪ f'(x)?3ax2?2bx?c?3a?2b ¡¡¡¡£¨2·Ö£© £¨I£©ÓÉͼ¿ÉÖª º¯Êýf(x)µÄͼÏó¹ýµã£¨0£¬3£©£¬ÇÒf'(1)?0 µÃ
?d?3??3a?2b?c?3a?2b?0?d?3 ???c?0 ¡¡¡¡£¨4·Ö£©
£¨II£©ÒÀÌâÒâ
f'(2)??3ÇÒf(2)?5
?12a?4b?3a?2b??3 ?8a?4b?6a?4b?3?5?
½âµÃ a?1,b??6 ËùÒÔf(x)?x3?6x2?9x?3 ¡¡¡¡£¨8·Ö£© £¨III£©f?(x)?3x2?12x?9£®¿Éת»¯Îª£ºx3?6x2?9x?3??x2?4x?3??5x?mÓÐÈý¸ö
²»µÈʵ¸ù£¬¼´£ºg?x??x3?7x2?8x?mÓëxÖáÓÐÈý¸ö½»µã£» g??x??3x2?14x?8??3x?2??x?4?£¬
x g??x? g?x? 2?????,? 3??2 3?2?4? ?£¬?3?4 ?4£¬??? + Ôö + Ôö 0 ¼«´óÖµ - ¼õ 0 ¼«Ð¡Öµ ?2?68g????m,g?4???16?m£® ¡¡¡¡£¨10·Ö£© ?3?272?68?m?0ÇÒg?4???16?m?0ʱ£¬ÓÐÈý¸ö½»µã£¬ µ±ÇÒ½öµ±g?????3?27¹Ê¶ø£¬?16?m?68ΪËùÇó£® ¡¡¡¡£¨12·Ö£©
272£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êýf(x)?alnx?ax?3(a?R)£® £¨I£©Çóº¯Êýf(x)µÄµ¥µ÷Çø¼ä£»
£¨II£©º¯Êýf(x)µÄͼÏóµÄÔÚx?4´¦ÇÐÏßµÄбÂÊΪ
1mg(x)?x3?x2[f'(x)?]ÔÚÇø¼ä£¨1£¬3£©Éϲ»Êǵ¥µ÷º¯Êý£¬Çó
323,Èôº¯Êý2mµÄȡֵ·¶Î§£®
½â£º£¨I£©f'(x)?a(1?x)(x?0) x?0,1?,¼õÇø¼äΪµ±a?0ʱ,f(x)µÄµ¥µ÷ÔöÇø¼äΪ?1,???
£¨2·Ö£©
µ±a?0ʱ,f(x)µÄµ¥µ÷ÔöÇø¼äΪ?1,???,¼õÇø¼äΪ?0,1?;
µ±a=1ʱ£¬f(x)²»Êǵ¥µ÷º¯Êý £¨II£©f'(4)??£¨5·Ö£©
3a3?µÃa??2,f(x)??2lnx?2x?3 421m?g(x)?x3?(?2)x2?2x,?g'(x)?x2?(m?4)x?2£¨6·Ö£©
32?g(x)ÔÚÇø¼ä(1,3)Éϲ»Êǵ¥µ÷º¯Êý,ÇÒg'(0)??2
?g'(1)?0, ???g'(3)?0.?m??3,19m?(?,?3) £¨8·Ö£©??£¨10·Ö£©19?3m?,?3?£¨12·Ö£©
3£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
ÒÑÖªº¯Êýf(x)?x3?ax2?bx?cµÄͼÏó¾¹ý×ø±êԵ㣬ÇÒÔÚx?1´¦È¡µÃ¼«´óÖµ£® £¨I£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨II£©Èô·½³Ì
(2a?3)2f(x)??9Ç¡ºÃÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Çóf(x)µÄ½âÎöʽ£»
|f(2sin?)?f(2sin?)|?81£®£¨III£©¶ÔÓÚ£¨II£©Öеĺ¯Êýf(x)£¬¶ÔÈÎÒâ?¡¢??R£¬ÇóÖ¤£º
½â£º£¨I£©f(0)?0?c?0,f?(x)?3x2?2ax?b,f?(1)?0?b??2a?3 ?f?(x)?3x2?2ax?(2a?3)?(x?1)(3x?2a?3),
ÓÉf?(x)?0?x?1»òx??2a?3£¬ÒòΪµ±x?1ʱȡµÃ¼«´óÖµ£¬
3 ËùÒÔ?2a?3?1?a??3£¬ËùÒÔaµÄȡֵ·¶Î§ÊÇ:(??,?3)£»
3¡¡¡
¡£¨4·Ö£© £¨II£©ÓÉÏÂ±í£º x f?(x) f(x) (??,1) 1 (1,?2a?3)3 ?2a?3 3(?2a?3,??)3 + µÝÔö 0 ¼«´óÖµ?a?2 - µÝ¼õ 0 ¼«Ð¡Öµ a?6(2a?3) 2- µÝÔö £¬½âµÃ£ºa??9
¡¡¡
27
a?6(2a?3)22(2a?3)??ÒÀÌâÒâµÃ£º279 ËùÒÔº¯Êýf(x)µÄ½âÎöʽÊÇ£ºf(x)?x3?9x2?15x
¡£¨10·Ö£©
£¨III£©¶ÔÈÎÒâµÄʵÊý?,?¶¼ÓÐ?2?2sin??2,?2?2sin??2,
ÔÚÇø¼ä[-2£¬2]ÓУº f(?2)??8?36?30??74,f(1)?7,f(2)?8?36?30?2 f(x)µÄ×î´óÖµÊÇf(1)?7,f(x)µÄ×îСֵÊÇf(?2)??8?36?30??74 º¯Êýf(x)ÔÚÇø¼ä[?2,2]ÉϵÄ×î´óÖµÓë×îСֵµÄ²îµÈÓÚ81£¬ ËùÒÔ|f(2sin?)?f(2sin?)|?81£®
¡¡¡
¡£¨14·Ö£© 4£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖª³£Êýa?0£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬º¯Êýf(x)?ex?x£¬g(x)?x2?alnx£® £¨I£©Ð´³öf(x)µÄµ¥µ÷µÝÔöÇø¼ä£¬²¢Ö¤Ã÷ea?a£» £¨II£©ÌÖÂÛº¯Êýy?g(x)ÔÚÇø¼ä(1,ea)ÉÏÁãµãµÄ¸öÊý£® ½â£º£¨I£©f?(x)?ex?1?0£¬µÃf(x)µÄµ¥µ÷µÝÔöÇø¼äÊÇ(0,??)£¬ ¡¡¡¡£¨2·Ö£© ¡ßa?0£¬¡àf(a)?f(0)?1£¬¡àea?a?1?a£¬¼´ea?a£® ¡¡¡¡£¨4·Ö£©
2a2a)(x?)a22£¨II£©g?(x)?2x??£¬ÓÉg?(x)?0£¬µÃx?2a2xx2a2a2a(0,) (,??) x 222g?(x) - 0 + 2(x?g(x) £¬Áбí
µ¥µ÷µÝ¼õ ¼«Ð¡Öµ µ¥µ÷µÝÔö 2aaa)?(1?ln)£¬ÎÞ¼«´óÖµ£® 222µ±x?2a2ʱ£¬º¯Êýy?g(x)È¡¼«Ð¡Öµg( ¡¡¡¡£¨6
Ïà¹ØÍÆ¼ö£º