当a>1时,①式等价于
(25)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得
于是原方程等价于方程组
由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论.
情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为
x+2│x│=a. ③
(Ⅰ)令x>0,方程③变为x+2x=a. ④
2
2
由此可知:当a=0时,方程④无正根;
(Ⅱ)令x<0,方程③变为x2-2x=a. ⑤
由此可知:当a=0时,方程⑤无负根;
(Ⅲ)令x=0,方程③变为0=a. ⑥ 由此可知:当a=0时,方程⑥有零解x=0; 当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0;
情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y+2│y│=a. ⑦
(Ⅰ)令y>0,方程⑦变为-y+2y=a,即(y-1)=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根.
2
2
2
从而, 当a=0时,方程⑧有正
根 y=2;
(Ⅱ)令y<0,方程⑦变为-y-2y=a,即(y+1)=1-a. ⑨ 由此可知:当a>1时,方程⑨无实根.
2
2
从而, 当a=0时,方程⑨有负根 y=-2;
所以,原方程的纯虚数解是: 当a=0时,z=±2i;
而当a>1时,原方程无纯虚数解. 解法二:设z=x+yi,代入原方程得
于是原方程等价于方程组
由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.
情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a.