情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a.
当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i.
即当0 当a>1时,方程④无实根,所以这时原方程无纯虚数解. 解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0). 情形1. 若z=x.以下同解法一或解法二中的情形1. 情形2. 若z=yi(y≠0).以下同解法一或解法二中的情形2. 解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得 r2cos2θ+2r+ir2sin2θ=a. 于是原方程等价于方程组 情形1. 若r=0.①式变成 0=a. ③ 由此可知:当a=0时,r=0是方程③的解. 当a>0时,方程③无解. 所以, 当a=0时,原方程有解z=0; 当a>0时,原方程无零解. (Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为 r2+2r=a. ④ 由此可知:当a=0时,方程④无正根; (Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为 -r2+2r=a,即(r-1)2=1-a, ⑤ 由此可知:当a>1时,方程⑤无实根,从而无正根; 从而, 当a=0时,方程⑤有正 根 r=2; 所以, 当a=o时,原方程有解z=±2i; 当0 当a>1时,原方程无纯虚数解.
相关推荐: