P=3! P (A 1 B2 C3)= 6P (A 1) P (B2) P (C3)=6???1111?.
2366(2) 设3名工人中选择的项目属于民生工程的人数为?,
1由已知?~B(3,),且X?3??所以
31122313P(X?0)?P(??3)?C3()?,P(X?1)?P(??2)?C32()2()?,
327339411122023P(X?2)?P(??1)?C3()()?,P(X?3)?P(??0)?C3()?,
339327故X的分布列是
?0?X的数学期望是E(X)1248?1??2??3??2. 2799271?a1(a?). x?12
2.已知函数f(x)?ln(x?1)?ax?(1)当曲线y?f(x)在点(1,f(1))处的切线与直线l:y??2x?1平行时,求a的值; (2)求函数f(x)的单调区间. 解:f?(x)?11?a?x(ax?2a?1)?a??,x??1, x?1(x?1)2(x?1)21?3a??2,解得a?3, 4
(1)由题意可得f?(1)?因为f(1)?ln2?4,此时在点(1,f(1))处的切线方程为y?(ln2?4)??2(x?1), 即y??2x?ln2?2,与直线l:y??2x?1平行,故所求a的值为3. (2)令f?(x)?0,得到x1?由a?1?2,x2?0, a11可知?2?0,即x1?0. 2a11① 当a?时,x1??2?0?x2.
2a
9
?x2所以f?(x)??0,x?(?1,??), 22(x?1)故f(x)的单调递减区间为(?1,??).
11?a?1时, ?1??2?0,即-1?x1?0?x2, 2a1所以在区间(?1,?2)和(0,??)上f?(x)?0,
a1在区间(?2,0)上f?(x)?0.
a11故f(x)的单调递减区间为(?1,?2)和(0,??),单调递增区间为(?2,0).
aa1③ 当a?1时,x1??2?-1,
a② 当
所以在区间(?1,0)上f?(x)?0; 在区间(0,??)上f?(x)?0;
故f(x)的单调递增区间为(?1,0),单调递减区间为(0,??). 综合讨论可得:
1
时,函数f(x)的单调递减区间为(?1,??); 211当?a?1时,函数f(x)的单调递减区间为(?1,?2)和(0,??),单调递增区2a1间为(?2,0).
a当a?
当a?1时,函数f(x)的单调递增区间为(?1,0),单调递减区间为(0,??).
10
相关推荐: