第一范文网 - 专业文章范例文档资料分享平台

【期末复习】大学概率论与数理统计期末考试试卷 答案

来源:用户分享 时间:2025/8/24 2:32:32 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

优选教育资源 共赢共享共进

20**~20**学年第一学期概率论与数理统计期末考试试卷(A卷)答案

一.(本题满分8分)

某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解:

设事件A??汽车牌照号中含有数字8?,所求概率为P?A?.…………….2分

95P?A??1?P?A??1?5?0.40951.…………….6分

10二.(本题满分8分)

设随机事件,,满足:P?A??P?B??P?C??件,,都不发生的概率. 解:

11,P?AB??0,P?AC??P?BC??.求随机事416 由于ABC?AB,所以由概率的非负性以及题设,得0?P?ABC??P?AB??0,因此有

P?ABC??0.…………….2分

所求概率为PABC.注意到ABC?A?B?C,因此有…………….2分

??P?ABC??1?P?A?B?C?…………….2分

?1?P?A??P?B??P?C??P?AB??P?AC??P?BC??P?ABC?

?1?111113???0???0?.…………….2分 44416168三.(本题满分8分)

某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,?0?p?1?.求此人第6次射击时恰好第2次命中目标的概率. 解:

P?第6次射击时恰好第2次命中目标?

?…………….2分 ?P?前5次射击中命中1次目标,第6次射击时命中目标?P?前5次射击中命中1次目标??P?第6次射击时命中目标?…………….2分

优选教育资源 共赢共享共进

4411?C5p?1?p??p?5p2?1?p?.…………….4分

四.(本题满分8分)

某种型号的电子元件的使用寿命(单位:小时)具有以下的密度函数:

?1000?x?1000p?x???x2.

?x?1000?0⑴ 求某只电子元件的使用寿命大于1500小时的概率(4分);⑵ 已知某只电子元件的使用寿命大于1500小时,求该元件的使用寿命大于20**小时的概率(4分). 解:

⑴ 设A??电子元件的使用寿命大于1500小时?,则

100010002P?A??P?X?1500???p?x?dx??dx???.…………….4分 2xx3150015001500??????⑵ 设B??电子元件的使用寿命大于2000小时?,则所求概率为P?BA?.

P?BA????P?X?2000?.…………….2分 P?AB?P?X?1500,X?2000?P?A?P?A?P?A???????10001000dx??而 P?X?2000???p?x?dx??x2x20002000?20001, 21??2?3.…………….2分 P?X?2000所以, P?BA??24P?A?3五.(本题满分8分) 设随机变量服从区间??1,2?上的均匀分布,而随机变量

X?0?1. Y???1X?0?求数学期望E?Y?. 解:

E?Y??1?P?Y?1????1??P?Y??1?…………….2分 ?1?P?X?0????1??P?X?0?…………….2分

优选教育资源 共赢共享共进

11??pX?x?dx??pX?x?dx??dx??dx

303?10???211??.…………….4分 333??020六.(本题满分8分)

设在时间(分钟)内,通过某路口的汽车数X?t?服从参数为的Poisson(泊松)分布,其中??0为常数.已知在1分钟内没有汽车通过的概率为,求在2分钟内至少有1辆汽车通过的概率. 解:

??t?k??tX?t?的分布列为P?X?t??k??e,?k?0,k!因此在t?1分钟内,通过的汽车数为

1,2,??.…………….2分

P?X?1??k???kk!e??,?k?0,1,2,??.

由题设,P?X?1??0??e???0.2,所以??ln5.…………….3分

0?2?5??2?因此,P?X?2??1??1?P?X?2??0??1?e?1?e?2ln5?1?0!124?.…………….3分 2525七.(本题满分8分)

设二维随机变量?X,Y?的联合密度函数为

f?x,?10?x?1,0?y?2x y???0其它?求:⑴随机变量边缘密度函数fY?y?(4分);⑵ 方差D?Y?(4分). 解:

⑴fY?y???????f?x,y?dx.

因此,当y?0或者y?2时,fY?y??0.…………….1分 当0?y?2时,

??y2fY?y?????f?x,y?dx??dx?0y. 2优选教育资源 共赢共享共进

?y?所以, fY?y???2??00?y?2其它.…………….3分

⑵E?Y???????yfY?y?dy?12yydy?2?602232?024. 3EY2??13y42??yfY?y?dy??ydy??2…………….2分

2080????162?4?所以, D?Y??EY2??E?Y??2?2????2??.…………….2分

99?3???2八.(本题满分8分)

现有奖券10000张,其中一等奖一张,奖金1000元;二等奖10张,每张奖金200元;三等奖100张,每张奖金10元;四等奖1000张,每张奖金2元.而购买每张奖券2元,试计算买一张奖券的平均收益. 解:

设:购买一张奖券所得的奖金. 则的分布律为

所以,…………….2分

E?X??1000?11010010003?200??10??2??…………….4分 10000100001000010000537?2??(元).…………….2分 551000 1 10000200 10 1000010 100 100002 1000 10000再令表示购买一张奖券的收益,则Y?X?2,因此

E?Y??E?X??2?九.(本题满分8分)

两家电影院竞争1000名观众,假设每位观众等可能地选择两个电影院中的一个,而且互不影响.试用中心极限定理近似计算:甲电影院应设多少个座位,才能保证“因缺少座位而使观众离去”的概率不超过1%?

附:标准正态分布N?0,1?的分布函数??x?的某些数值表

1.96 0.975 2.06 0.98 2.17 0.985 2.33 0.99 2.38 0.995 ??x?

【期末复习】大学概率论与数理统计期末考试试卷 答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0lfxj66whk5s23r4b01m9s4tl8lgrm00e7x_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top