【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立. 【解析】
试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE; (2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;
(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形. 试题解析:解:(1)FG=CE,FG∥CE;
(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,
∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;
(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.
7.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作?OBFC,连接OF与BC交于点H,再连接EF.
(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=
BC;
(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;
(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.
【答案】(1)见解析; (2)EF⊥BC仍然成立; (3)EF=【解析】
试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=
BC,即可;
BC
(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=
BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=试题解析:(1)连接AH,如图1,
BC,即可.
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF, ∵△ABC是等边三角形, ∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2,
BC,
∴AH=
∵OA=AE,OH=HF,
=
∴AH是△OEF的中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,
BC=EF, BC;
∴EF⊥BC,EF=
(2)EF⊥BC仍然成立,EF=BC,如图2,
∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=
BC,AH⊥BC,
BH)2﹣BH2=BH2,
在Rt△ABH中,AH2=AB2﹣BH2=(∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF的中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (3)如图3,
∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=kBC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC2=(k2-)BC2,
)
∴AH=BH=
BC,
∵OA=AE,OH=HF, ∴AH是△OEF的中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,∴EF=
BC.
BC=EF,
考点:四边形综合题.
8.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.
(1)CE= (含t的代数式表示). (2)求点G落在线段AC上时t的值. (3)当S>0时,求S与t之间的函数关系式. (4)点P在点E出发的同时从点A出发沿A-H-A以每秒2围.
个单位长度的速度作往复运
动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范
相关推荐: