解析:
推理过程是这样的:从后向前推,如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。3号知道这一点,就会提100,0,0的分配方案,对4号、5号一毛不拔而将全部金币归为己有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。 不过,2号推知到3号的方案,就会提出98,0,1,1的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。
但是,2号的方案会被1号所洞悉,1号并将提出97,0,1,2,0或97,0,1,0,2的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了。
可以看出,这个推理过程就先考虑简化的极端情况,从而顺藤摸瓜,得出最后的结果。另外,这其实是经济学中的博弈问题,1号提出的方案就是这种情况下的纳什均衡。 (二)缺陷球
有8颗弹子球,其中1颗是“缺陷球”,也就是它比其他的球都重。你怎样使用天平只通过两次称量就能够找到这个球?
解析:
要想解决这个问题,必须充分利用天平可以量出两边弹子球重量是否相等这一事实,即无论什么时候只要两边重量相等,就表明“缺陷球”不在这些弹子球中。
第一次称重,在天平的两边各任意放3颗球。这时候会有两种可能的结果。如果天平两边的重量是平衡的,就可以确定所称量的6个球当中没有“缺陷球”。因此第二次称重时只要称量剩下的2颗球,较重的1颗就是“缺陷球”。如果天平的一边比另一边重,那么可以确定“缺陷球”肯定位于天平较重一边的3颗球当中。第二次称量时只要从这3个球当中任
意拿出2个进行称量。如果两边平衡,则3颗球中剩下的没有参加称量的1颗球就是“缺陷球”,如果两边不平衡,则较重的一边就是“缺陷球”。
大学生就业最看重的10个因素”,选项里包括企业发展、薪水、户口等等,要求在10分钟内给出一个排序结果
相关推荐: